Commutativity in Concurrent Program Verification

Dominik Klumpp
klumpp@informatik.uni-freiburg.de
University of Freiburg
joint work with: Azadeh Farzan (University of Toronto)
Andreas Podelski (University of Freiburg)
Marcel Ebbinghaus (University of Freiburg)

AVM 2022

Example Program

$$
\{x=y=i=j=0\}
$$

Naïve Sequentialization

Naïve Sequentialization

$$
x=\sum_{k=0}^{i} A[k] \wedge y=\sum_{k=0}^{j} A[k] \wedge i \leq n \wedge j \leq n
$$

Commutativity-Based Equivalence

Many statements commute: execution order does not matter

$$
\text { Example: } \mathrm{x}+=\mathrm{A}[\mathrm{i}] \quad \mathrm{y}+=\mathrm{A}[\mathrm{j}] \sim \mathrm{y}+=\mathrm{A}[\mathrm{j}] \quad \mathrm{x}+=\mathrm{A}[\mathrm{i}]
$$

Commutativity-Based Equivalence

Many statements commute: execution order does not matter

$$
\text { Example: } x+=A[i] \quad y+=A[j] \sim y+=A[j] \quad x+=A[i]
$$

\Rightarrow equivalence between program interleavings

Commutativity-Based Equivalence

Many statements commute: execution order does not matter

$$
\text { Example: } x+=A[i] \quad y+=A[j] \sim y+=A[j] \quad x+=A[i]
$$

\Rightarrow equivalence between program interleavings
Extension: proof-sensitive commutativity
Example: $\mathrm{B}[\mathrm{k}]:=\mathrm{c}$ commutes with $\mathrm{B}[1]:=\mathrm{d}$ if proof guarantees $k \neq l \vee c=d$

Commutativity-Based Equivalence

Many statements commute: execution order does not matter

$$
\text { Example: } x+=A[i] \quad y+=A[j] \sim y+=A[j] \quad x+=A[i]
$$

\Rightarrow equivalence between program interleavings
Extension: proof-sensitive commutativity
Example: $\mathrm{B}[\mathrm{k}]:=\mathrm{c}$ commutes with $\mathrm{B}[1]:=\mathrm{d}$ if proof guarantees $k \neq l \vee c=d$ Typical Cases: aliasing, conditional updates (CAS), blocking statements (locks)

Commutativity-Based Equivalence

Many statements commute: execution order does not matter

$$
\text { Example: } x+=A[i] \quad y+=A[j] \sim y+=A[j] \quad x+=A[i]
$$

\Rightarrow equivalence between program interleavings
Extension: proof-sensitive commutativity
Example: $\mathrm{B}[\mathrm{k}]:=\mathrm{c}$ commutes with $\mathrm{B}[1]:=\mathrm{d}$ if proof guarantees $k \neq l \vee c=d$ Typical Cases: aliasing, conditional updates (CAS), blocking statements (locks)

Key Property: Correct traces only equivalent to correct traces.

Commutativity-Based Equivalence

Many statements commute: execution order does not matter

$$
\text { Example: } x+=A[i] \quad y+=A[j] \sim y+=A[j] \quad x+=A[i]
$$

\Rightarrow equivalence between program interleavings
Extension: proof-sensitive commutativity
Example: $\mathrm{B}[\mathrm{k}]:=\mathrm{c}$ commutes with $\mathrm{B}[1]:=\mathrm{d}$ if proof guarantees $k \neq l \vee c=d$ Typical Cases: aliasing, conditional updates (CAS), blocking statements (locks)

Key Property: Correct traces only equivalent to correct traces.

Reduction

One representative trace for each equivalence class

Naïve Sequentialization

Reduction I

Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program

Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program
complex proofs to cover all interleavings

- qualitatively: need quantified / nonlinear / . . assertions
- quantitatively: need many distinct proof assertions

Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program
complex proofs to cover all interleavings

- qualitatively: need quantified / nonlinear / . . assertions
- quantitatively: need many distinct proof assertions
\rightsquigarrow reduction may have simpler proof

Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program
complex proofs to cover all interleavings

- qualitatively: need quantified / nonlinear / . . assertions
- quantitatively: need many distinct proof assertions
\rightsquigarrow reduction may have simpler proof
exponential proof checking to show that proof covers all interleavings

Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program
complex proofs to cover all interleavings

- qualitatively: need quantified / nonlinear / . . assertions
- quantitatively: need many distinct proof assertions
\rightsquigarrow reduction may have simpler proof
exponential proof checking to show that proof covers all interleavings
\rightsquigarrow compactly represent reductions

Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program
complex proofs to cover all interleavings

- qualitatively: need quantified / nonlinear / . . assertions
- quantitatively: need many distinct proof assertions
\rightsquigarrow reduction may have simpler proof
exponential proof checking to show that proof covers all interleavings
\rightsquigarrow compactly represent reductions
[1] Ebbinghaus. Tight Integration of Partial Order Reduction into Trace Abstraction Refinement. BSc Thesis [2] Klumpp, Dietsch, Heizmann, Schüssele, Ebbinghaus, Farzan and Podelski. Ultimate GemCutter and the Axes of Generalization - (Competition Contribution). TACAS 2022

Evaluation

Implemented in Ultimate GemCutter software model checker Evaluated on SV-COMP'21 benchmarks and benchmarks of WEAVER tool

analyzed 50 more programs using significantly less time ($\approx 50 \%$), memory ($\approx 27 \%$), and refinement rounds ($\approx 64 \%$)

Reductions

Reduction: One representative trace for each equivalence class

Reductions

Reduction: One representative trace for each equivalence class

$$
\operatorname{red}_{\preceq}^{I}(P)
$$

Reductions

Reduction: One representative trace for each equivalence class

Reductions

Reduction: One representative trace for each equivalence class

Reductions

Reduction: One representative trace for each equivalence class

Preference Orders

Selecting the right representatives

[3] Farzan, Klumpp and Podelski. Sound sequentialization for concurrent program verification. PLDI 2022

Reduction I

Reduction | $x=\sum_{k=0}^{i} A[k] \wedge i \leq n \wedge y=0 \wedge j=0$

$$
-\sum_{i n}
$$

Reduction II

Reduction II

Characterizing Reductions

Preference orders characterize choice of reduction

Characterizing Reductions

Preference orders characterize choice of reduction

- order interleavings from most preferred (smallest) to least preferred (greatest)

Characterizing Reductions

Preference orders characterize choice of reduction

- order interleavings from most preferred (smallest) to least preferred (greatest)
- keep only most preferred representative per equivalence class

$$
\operatorname{red}_{\preceq}^{I}(P):=\left\{\min _{\preceq}[\tau]_{\sim_{I}} \mid \tau \in P\right\}
$$

Characterizing Reductions

Preference orders characterize choice of reduction

- order interleavings from most preferred (smallest) to least preferred (greatest)
- keep only most preferred representative per equivalence class

$$
\operatorname{red}_{\preceq}^{I}(P):=\left\{\min _{\preceq}[\tau]_{\sim_{I}} \mid \tau \in P\right\}
$$

- independent of commutativity

Characterizing Reductions

Preference orders characterize choice of reduction

- order interleavings from most preferred (smallest) to least preferred (greatest)
- keep only most preferred representative per equivalence class

$$
\operatorname{red}_{\preceq}^{I}(P):=\left\{\min _{\preceq}[\tau]_{\sim_{I}} \mid \tau \in P\right\}
$$

- independent of commutativity
- same scheme of preference order applies to different programs

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:

- finite representation as control flow graphs

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:

- finite representation as control flow graphs
- constructed using variant of sleep set technique

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:

- finite representation as control flow graphs
- constructed using variant of sleep set technique
- no redundant interleavings: proofs not unnecessarily complex

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:

- finite representation as control flow graphs
- constructed using variant of sleep set technique
- no redundant interleavings: proofs not unnecessarily complex
- compact representation

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:

- finite representation as control flow graphs
- constructed using variant of sleep set technique
- no redundant interleavings: proofs not unnecessarily complex
- compact representation
- through weakly persistent membranes

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:

- finite representation as control flow graphs
- constructed using variant of sleep set technique
- no redundant interleavings: proofs not unnecessarily complex
- compact representation
- through weakly persistent membranes
- linear-size representation in the best case

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:

- finite representation as control flow graphs
- constructed using variant of sleep set technique
- no redundant interleavings: proofs not unnecessarily complex
- compact representation
- through weakly persistent membranes
- linear-size representation in the best case
\rightarrow More on preference orders in Marcel's talk

Commutativity Relations

at different abstraction levels

[work in progress; presented at Commute workshop @ PLDI'22]

Commutativity

Statements $s t_{1}$ and $s t_{2}$ commute

 iff
Commutativity

Statements $s t_{1}$ and s_{2} commute

iff

the order of execution does not matter

Commutativity

Statements $s t_{1}$ and $s t_{2}$ commute

iff

the order of execution does not matter (st $s t_{2}$ behaves exactly like $s t_{2} s t_{1}$)

$$
\text { Formally: } \llbracket s_{1} s t_{2} \rrbracket=\llbracket s s_{2} s s_{1} \rrbracket
$$

Statements $s t_{1}$ and $s t_{2}$ commute

iff

the order of execution does not matter (st $s t_{2}$ behaves exactly like st $t_{2} s t_{1}$)
for all programs and wrt. all properties

$$
\text { Formally: } \llbracket s t_{1} s t_{2} \rrbracket=\llbracket s t_{2} s t_{1} \rrbracket
$$

Statements $s t_{1}$ and $s t_{2}$ commute

iff

the order of execution does not matter (st $t_{1} s t_{2}$ behaves similar enough to $s t_{2} s t_{1}$)
for a given program and property

Commutativity

Statements $s t_{1}$ and s_{2} commute

abstract irrelevant details
iff
the order of execution does not matter (st $t_{1} t_{2}$ behaves similar enough to $s t_{2} s t_{1}$) for a given program and property

Commutativity

Statements $s t_{1}$ and s_{2} commute

abstract irrelevant details
iff preserve relevant details the order of execution does nol matter (st $s t_{2}$ behaves similar enough to $s t_{2} s t_{1}$) for a given program and property

Commutativity

Statements $s t_{1}$ and $s t_{2}$ commute

abstract irrelevant details
iff
preserve relevant details the order of execution does nol matter ($s t_{1} s t_{2}$ behaves similar enough to $s t_{2} s t_{1}$) for a given (partial) proof

Safe Commutativity

Let Π be a proof (a set of Hoare triples).

$$
\frac{\operatorname{red}_{\preceq}^{I}(P) \subseteq \mathcal{L}(\Pi)}{P \text { is correct }}
$$

Safe Commutativity

Let Π be a proof (a set of Hoare triples).

Safe Commutativity

Let Π be a proof (a set of Hoare triples).

Safe Commutativity

Let Π be a proof (a set of Hoare triples).

Safe Commutativity

Let Π be a proof (a set of Hoare triples).

$$
\begin{aligned}
& \text { traces proven correct by } \Pi \\
& P \text { is correct }
\end{aligned}
$$

- commutativity I_{C} based on (concrete) semantics: safe wrt. all proofs Π

Safe Commutativity

Let Π be a proof (a set of Hoare triples).

$$
\begin{aligned}
& \text { traces proven correct by } \Pi \\
& P \text { is correct }
\end{aligned}
$$

- commutativity I_{C} based on (concrete) semantics: safe wrt. all proofs Π
- How to get safe commutativity for a particular proof Π ?

Safe Abstraction

Let $\alpha:$ Stmt \rightarrow Stmt .

Safe Abstraction

Let $\alpha:$ Stmt \rightarrow Stmt .

$$
I_{\alpha}:=\left\{\left(s t_{1}, s t_{2}\right) \mid \llbracket \alpha\left(s t_{1}\right) \alpha\left(s t_{2}\right) \rrbracket=\llbracket \alpha\left(s t_{2}\right) \alpha\left(s t_{1}\right) \rrbracket\right\}
$$

Safe Abstraction

Let $\alpha:$ Stmt \rightarrow Stmt .

$$
I_{\alpha}:=\left\{\left(s t_{1}, s t_{2}\right) \mid \llbracket \alpha\left(s t_{1}\right) \alpha\left(s t_{2}\right) \rrbracket=\llbracket \alpha\left(s t_{2}\right) \alpha\left(s t_{1}\right) \rrbracket\right\}
$$

Theorem (Safety)

If α satisfies

- abstraction: $\llbracket s t \rrbracket \subseteq \llbracket \alpha(s t) \rrbracket$ for all st
- preservation: $\{\varphi\} \alpha(s t)\{\psi\}$ is valid, for all $\{\varphi\} s t\{\psi\} \in \Pi$
then I_{α} is safe wrt. П.

Instance: Projection to the Proof

Idea: Variable x does not occur in the proof \Rightarrow Ignore x when determining commutativity

Instance: Projection to the Proof

Idea: Variable x does not occur in the proof \Rightarrow Ignore x when determining commutativity Abstraction:

- reads of irrelevant variables \rightsquigarrow nondeterministic values
- assignment to irrelevant variables \rightsquigarrow nondeterministic assignment (havoc)

Instance: Projection to the Proof

Idea: Variable x does not occur in the proof \Rightarrow Ignore x when determining commutativity

Abstraction:

- reads of irrelevant variables \rightsquigarrow nondeterministic values
- assignment to irrelevant variables \rightsquigarrow nondeterministic assignment (havoc)

Example

Let $\Pi=\{\{T\} y:=x+x \quad\{y \neq 1\}\}$. Then

Instance: Projection to the Proof

Idea: Variable x does not occur in the proof \Rightarrow Ignore x when determining commutativity

Abstraction:

- reads of irrelevant variables \rightsquigarrow nondeterministic values
- assignment to irrelevant variables \rightsquigarrow nondeterministic assignment (havoc)

Example

Let $\Pi=\{\{T\} \quad \mathrm{y}:=\mathrm{x}+\mathrm{x}\{y \neq 1\}\}$. Then

$$
\alpha_{\Pi}(\mathrm{y}:=\mathrm{x}+\mathrm{x}) \quad: \quad \text { assign } \mathrm{y} \text { to some even value (nondet.)" }
$$

Instance: Projection to the Proof

Idea: Variable x does not occur in the proof \Rightarrow Ignore x when determining commutativity

Abstraction:

- reads of irrelevant variables \rightsquigarrow nondeterministic values
- assignment to irrelevant variables \rightsquigarrow nondeterministic assignment (havoc)

Example

Let $\Pi=\{\{T\} \quad \mathrm{y}:=\mathrm{x}+\mathrm{x}\{y \neq 1\}\}$. Then

$$
\begin{aligned}
& \alpha_{\Pi}(\mathrm{y}:=\mathrm{x}+\mathrm{x}): \\
& \alpha_{\Pi}(\mathrm{x}:=0) \text { : "assign y to some even value (nondet.)" } \\
& \text { "do not change } \mathrm{y} "
\end{aligned}
$$

Instance: Projection to the Proof

Idea: Variable x does not occur in the proof \Rightarrow Ignore x when determining commutativity

Abstraction:

- reads of irrelevant variables \rightsquigarrow nondeterministic values
- assignment to irrelevant variables \rightsquigarrow nondeterministic assignment (havoc)

Example

Let $\Pi=\{\{T\} \quad \mathrm{y}:=\mathrm{x}+\mathrm{x}\{y \neq 1\}\}$. Then

$$
\begin{aligned}
\alpha_{\Pi}(\mathrm{y}:=\mathrm{x}+\mathrm{x}) & \text { : "assign y to some even value (nondet.)" } \\
\alpha_{\Pi}(\mathrm{x}:=0) & \text { : "do not change y" }
\end{aligned}
$$

Now: $\alpha_{\Pi}(\mathrm{y}:=\mathrm{x}+\mathrm{x})$ commutes with $\alpha_{\Pi}(\mathrm{x}:=0)$.

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation). Advantages: Limitations:

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).
Advantages: Limitations:

- often allows additional commutativity

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).
Advantages: Limitations:

- often allows additional commutativity
- abstraction easy to compute

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages:

- often allows additional commutativity
- abstraction easy to compute

Limitations:

- theoretically: may lose commutativity

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages:

- often allows additional commutativity
- abstraction easy to compute

Limitations:

- theoretically: may lose commutativity
- practically: introduces quantifiers

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages:

- often allows additional commutativity
- abstraction easy to compute

Limitations:

- theoretically: may lose commutativity
- practically: introduces quantifiers

Generally: abstract commutativity \nsupseteq concrete commutativity

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages:

- often allows additional commutativity
- abstraction easy to compute

Limitations:

- theoretically: may lose commutativity
- practically: introduces quantifiers

Generally: abstract commutativity \nsupseteq concrete commutativity Solution: combine abstract with concrete commutativity

Combining Commutativity Relations

Observation: Union of safe commutativity relations may be unsafe!

Combining Commutativity Relations

Observation: Union of safe commutativity relations may be unsafe!
Example:

- precondition: T
- postcondition: $z=2$
- proof $\Pi:\{T\} \mathrm{x}:=1\{T\} \mathrm{x}==1 ; \mathrm{z}:=1\{T\} \mathrm{x}==2 ; \mathrm{z}:=2\{z=2\}$

Combining Commutativity Relations

Observation: Union of safe commutativity relations may be unsafe!
Example:

- precondition: T
- postcondition: $z=2$
- proof $\Pi:\{T\} \mathrm{x}:=1\{T\} \mathrm{x}==1 ; \mathrm{z}:=1\{T\} \mathrm{x}==2 ; \mathrm{z}:=2\{z=2\}$

```
x:=1 x==1;z:=1 x==2;z:=2
```


Combining Commutativity Relations

Observation: Union of safe commutativity relations may be unsafe!
Example:

- precondition: \top
- postcondition: $z=2$
- proof $\Pi:\{T\} \mathrm{x}:=1\{T\} \mathrm{x}==1 ; \mathrm{z}:=1\{T\} \mathrm{x}==2 ; \mathrm{z}:=2\{z=2\}$

$$
x:=1 \quad x==1 ; z:=1 \quad x==2 ; z:=2 \quad \sim_{I_{C}} \quad x:=1 \quad x==2 ; z:=2 \quad x==1 ; z:=1
$$

Combining Commutativity Relations

Observation: Union of safe commutativity relations may be unsafe!
Example:

- precondition: \top
- postcondition: $z=2$
- proof $\Pi:\{T\} \mathrm{x}:=1\{T\} \mathrm{x}==1 ; \mathrm{z}:=1\{T\} \mathrm{x}==2 ; \mathrm{z}:=2\{z=2\}$

$$
\begin{aligned}
\mathrm{x}:=1 \mathrm{x}==1 ; \mathrm{z}:=1 \quad \mathrm{x}==2 ; \mathrm{z}:=2 & \sim_{I_{C}} \mathrm{x}:=1 \quad \mathrm{x}==2 ; \mathrm{z}:=2 \quad \mathrm{x}==1 ; \mathrm{z}:=1 \\
& \sim_{I_{\alpha}} \mathrm{x}==2 ; \mathrm{z}:=2 \quad \mathrm{x}:=1 \quad \mathrm{x}==1 ; \mathrm{z}:=1
\end{aligned}
$$

Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

	(1) abstract	(2) concrete		
τ_{1}	$\sim I_{\alpha}$	τ_{2}	$\sim I_{C}$	τ_{3}
		\Rightarrow		$\stackrel{\uparrow}{\text { orrect }}$

Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

Combination through new proof rule:

$$
\frac{\operatorname{red}_{\preceq}^{I_{\alpha}, I_{C}}(P) \subseteq \mathcal{L}(\Pi) \quad I_{\alpha} \text { safe wrt. } \Pi}{P \text { is correct }}
$$

Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

Combination through new proof rule:

"more abstract than"

$$
\frac{\operatorname{red}_{\preceq}^{I_{1}, \ldots, I_{n}}(P) \subseteq \mathcal{L}(\Pi) \quad I_{1}, \ldots, I_{n} \text { safe wrt. } \Pi \quad I_{1} \supseteq \ldots \supseteq I_{n}}{P \text { is correct }}
$$

Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

Combination through new proof rule:

more abstract than"

$$
\frac{\operatorname{red}_{\preceq}^{I_{1}, \ldots, I_{n}}(P) \subseteq \mathcal{L}(\Pi) \quad I_{1}, \ldots, I_{n} \text { safe wrt. } \Pi \quad I_{1} \supseteq \ldots \supseteq I_{n}}{P \text { is correct }}
$$

New partial order reduction algorithm for n commutativity relations

Conclusion

Summary

In algorithmic verification, commutativity-based reductions can simplify proofs and allow efficient proof checking.

Summary

In algorithmic verification, commutativity-based reductions can simplify proofs and allow efficient proof checking.

Preference Orders: Selection of representatives in reduction

- influences both proof simplicity and proof check efficiency
- trade-off between both aspects

Summary

In algorithmic verification, commutativity-based reductions can simplify proofs and allow efficient proof checking.

Preference Orders: Selection of representatives in reduction

- influences both proof simplicity and proof check efficiency
- trade-off between both aspects

Commutativity Relations: Determines notion of equivalence

- automatically computed and safe wrt. a proof
- e.g. derived from safe abstractions
- new proof rule and algorithm combine commutativity relations

Summary

In algorithmic verification, commutativity-based reductions can simplify proofs and allow efficient proof checking.

Preference Orders: Selection of representatives in reduction

- influences both proof simplicity and proof check efficiency
- trade-off between both aspects

Commutativity Relations: Determines notion of equivalence

- automatically computed and safe wrt. a proof
- e.g. derived from safe abstractions
- new proof rule and algorithm combine commutativity relations

Questions?

