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Example Program

{ x = y = i = j = 0 }

while (i < n) {
x += A[i];
i++;

}

∥
while (j < n) {

y += A[j];
j++;

}

{ x = y }
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Naïve Sequentialization

i<
n

x+
=A

[i
]

i+
+

x+
=A

[i
]

i+
+

j<n

y+=A[j]

j++

j<n

y+=A[j]

j>=n

j>=n

j>=n

i<
n

x+
=A

[i
]

i+
+

i>=n

i>=n

i>=n

j<n
y+=A[j]

j+
+

j>=ni>=n

Counterexample:
τ = i<n x+=A[i] j<n y+=A[j] i++ j++ i>=n j>=n

x =
i∑

k=0
A[k] ∧ y =
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x = y ∧ i = j x = y ∧ j ≥ nx = y ∧ i ≥ n

x =
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Commutativity-Based Equivalence

Many statements commute: execution order does not matter

Example: x+=A[i] y+=A[j] ∼ y+=A[j] x+=A[i]

⇒ equivalence between program interleavings

Extension: proof-sensitive commutativity

Example: B[k]:=c commutes with B[l]:=d if proof guarantees k ̸= l ∨ c = d
Typical Cases: aliasing, conditional updates (CAS), blocking statements (locks)

Key Property: Correct traces only equivalent to correct traces.

Reduction
One representative trace for each equivalence class
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Reduction I
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Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program

complex proofs to cover all interleavings
▶ qualitatively: need quantified / nonlinear / . . . assertions
▶ quantitatively: need many distinct proof assertions
⇝ reduction may have simpler proof

exponential proof checking to show that proof covers all interleavings
⇝ compactly represent reductions

[1] Ebbinghaus. Tight Integration of Partial Order Reduction into Trace Abstraction Refinement. BSc Thesis
[2] Klumpp, Dietsch, Heizmann, Schüssele, Ebbinghaus, Farzan and Podelski. Ultimate GemCutter and the

Axes of Generalization - (Competition Contribution). TACAS 2022
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Evaluation
Implemented in Ultimate GemCutter software model checker
Evaluated on SV-COMP’21 benchmarks and benchmarks of Weaver tool

200 400 600 800 1,000 1,200

10

100

4

900

CPU time (s)

Automizer GemCutter

200 400 600 800 1,000 1,200

1,000

200

8,000

Memory (MB)

analyzed 50 more programs using significantly less time (≈ 50 %), memory (≈ 27 %),
and refinement rounds (≈ 64 %)
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Reductions

Reduction: One representative trace for each equivalence class

redI
⪯(P )

program to be verified

commutativity relation I

defines equivalence classes

preference order ⪯
selects representatives for each equivalence class
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Preference Orders
Selecting the right representatives

[3] Farzan, Klumpp and Podelski. Sound sequentialization for concurrent program verification. PLDI 2022
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Reduction II
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Characterizing Reductions

Preference orders characterize choice of reduction

▶ order interleavings from most preferred (smallest) to least preferred (greatest)
▶ keep only most preferred representative per equivalence class

redI
⪯(P ) := { min⪯[τ ]∼I | τ ∈ P }

▶ independent of commutativity
▶ same scheme of preference order applies to different programs
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Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:

▶ finite representation as control flow graphs

constructed using variant of sleep set technique

▶ no redundant interleavings: proofs not unnecessarily complex
▶ compact representation

through weakly persistent membranes

▶ linear-size representation in the best case

→ More on preference orders in Marcel’s talk

13
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Commutativity Relations
at different abstraction levels

[work in progress; presented at Commute workshop @ PLDI’22]
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Commutativity

Statements st1 and st2 commute

iff

neither statement writes a variable accessed by the other
(“disjoint” variable accesses)

for all programs and wrt. all properties

Formally: read(st1) ∩ write(st2) = write(st1) ∩ read(st2) = write(st1) ∩ write(st2) = ∅

abstract irrelevant details preserve relevant details

15
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Commutativity

Statements st1 and st2 commute

iff

the order of execution does not matter
(st1st2 behaves similar enough to st2st1)

for a given (partial) proof

Formally: Jst1st2K = Jst2st1K

abstract irrelevant details preserve relevant details
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Safe Commutativity

Let Π be a proof (a set of Hoare triples).

redI⪯(P ) ⊆ L(Π)
P is correct

▶ commutativity IC based on (concrete) semantics: safe wrt. all proofs Π
▶ How to get safe commutativity for a particular proof Π?

traces proven correct by Πtraces proven correct by Π

traces in L(Π)
only equivalent to

correct traces

17
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Safe Abstraction

Let α : Stmt → Stmt.

Iα := { (st1, st2) | Jα(st1)α(st2)K = Jα(st2)α(st1)K }

Theorem (Safety)
If α satisfies
▶ abstraction: JstK ⊆ Jα(st)K for all st
▶ preservation: {φ}α(st){ψ} is valid, for all {φ}st{ψ} ∈ Π

then Iα is safe wrt. Π.
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Instance: Projection to the Proof

Idea: Variable x does not occur in the proof ⇒ Ignore x when determining commutativity

Abstraction:
▶ reads of irrelevant variables ⇝ nondeterministic values
▶ assignment to irrelevant variables ⇝ nondeterministic assignment (havoc)

Example
Let Π =

{
{⊤} y:=x+x {y ̸= 1}

}
. Then

αΠ( y:=x+x ) : “assign y to some even value (nondet.)”
αΠ( x:=0 ) : “do not change y”

Now: αΠ( y:=x+x ) commutes with αΠ( x:=0 ).
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Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages:

▶ often allows additional commutativity
▶ abstraction easy to compute

Limitations:

▶ theoretically: may lose commutativity
▶ practically: introduces quantifiers

Generally: abstract commutativity ⊉ concrete commutativity
Solution: combine abstract with concrete commutativity
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Combining Commutativity Relations

Observation: Union of safe commutativity relations may be unsafe!

Example:
▶ precondition: ⊤
▶ postcondition: z = 2
▶ proof Π: {⊤} x:=1 {⊤} x==1;z:=1 {⊤} x==2;z:=2 {z = 2}

x:=1 x==1;z:=1 x==2;z:=2 ∼IC
x:=1 x==2;z:=2 x==1;z:=1

∼Iα x==2;z:=2 x:=1 x==1;z:=1

21
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Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

τ1 ∼Iα τ2 ∼IC τ3
(1) abstract (2) concrete

proven correct⇒

Combination through new proof rule:

redIα,IC
⪯ (P ) ⊆ L(Π) Iα safe wrt. Π

P is correct

New partial order reduction algorithm for n commutativity relations

“more abstract than”

22



Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

τ1 ∼Iα τ2 ∼IC τ3
(1) abstract (2) concrete

proven correct⇒

Combination through new proof rule:

redIα,IC
⪯ (P ) ⊆ L(Π) Iα safe wrt. Π

P is correct

New partial order reduction algorithm for n commutativity relations

“more abstract than”

22



Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

τ1 ∼Iα τ2 ∼IC τ3
(1) abstract (2) concrete

proven correct⇒

Combination through new proof rule:

redIα,IC
⪯ (P ) ⊆ L(Π) Iα safe wrt. Π

P is correct

New partial order reduction algorithm for n commutativity relations

“more abstract than”

22



Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

τ1 ∼Iα τ2 ∼IC τ3
(1) abstract (2) concrete

proven correct⇒

Combination through new proof rule:

redI1,...,In
⪯ (P ) ⊆ L(Π) I1, . . . , In safe wrt. Π I1 ⋑ . . . ⋑ In

P is correct

New partial order reduction algorithm for n commutativity relations

“more abstract than”

22



Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

τ1 ∼Iα τ2 ∼IC τ3
(1) abstract (2) concrete

proven correct⇒

Combination through new proof rule:

redI1,...,In
⪯ (P ) ⊆ L(Π) I1, . . . , In safe wrt. Π I1 ⋑ . . . ⋑ In

P is correct

New partial order reduction algorithm for n commutativity relations

“more abstract than”

22



Conclusion
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Summary
In algorithmic verification, commutativity-based reductions can simplify proofs and allow
efficient proof checking.

Preference Orders: Selection of representatives in reduction
▶ influences both proof simplicity and proof check efficiency
▶ trade-off between both aspects

Commutativity Relations: Determines notion of equivalence
▶ automatically computed and safe wrt. a proof
▶ e.g. derived from safe abstractions
▶ new proof rule and algorithm combine commutativity relations

Questions?
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