Commutativity in Concurrent Program Verification

Dominik Klumpp
klumpp@informatik.uni-freiburg.de
University of Freiburg

joint work with:  Azadeh Farzan (University of Toronto)
Andreas Podelski  (University of Freiburg)
Marcel Ebbinghaus (University of Freiburg)

AVM 2022



Example Program

{r=y=i=j=0}

while (i < n) { while (j < n) {
x += A[i]; H y += A[j];
i++; JH+;

} }
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Commutativity-Based Equivalence

Many statements commute: execution order does not matter

Example: [ x+=A[i] (y+=A[j]1 ) ~ (y+=A[j] ) x+=A[i]
= equivalence between program interleavings
Extension: proof-sensitive commutativity

Example: | B[k]:=c commutes with (B[1]:=d if proof guarantees k #1Vc=d
Typical Cases: aliasing, conditional updates (CAS), blocking statements (locks)

Key Property: Correct traces only equivalent to correct traces.

One representative trace for each equivalence class
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Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program

complex proofs to cover all interleavings
» qualitatively: need quantified / nonlinear / ... assertions
» quantitatively: need many distinct proof assertions

~> reduction may have simpler proof

exponential proof checking to show that proof covers all interleavings
~» compactly represent reductions

[1] Ebbinghaus. Tight Integration of Partial Order Reduction into Trace Abstraction Refinement. BSc Thesis
[2] Klumpp, Dietsch, Heizmann, Schiissele, Ebbinghaus, Farzan and Podelski. Ultimate GemCutter and the
Axes of Generalization - (Competition Contribution). TACAS 2022



Evaluation

Implemented in ULTIMATE GEMCUTTER software model checker
Evaluated on SV-COMP’21 benchmarks and benchmarks of WEAVER tool
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commutativity relation /
defines equivalence classes

program to be verified

red’. (P)
7

preference order <
selects representatives for each equivalence class




Preference Orders

Selecting the right representatives

[3] Farzan, Klumpp and Podelski. Sound sequentialization for concurrent program verification. PLDI 2022
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Characterizing Reductions

Preference orders characterize choice of reduction
» order interleavings from most preferred (smallest) to least preferred (greatest)

P> keep only most preferred representative per equivalence class

redé(P) = {min<[7]., |TE€P}

» independent of commutativity

P> same scheme of preference order applies to different programs
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Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:
» finite representation as control flow graphs
e constructed using variant of sleep set technique
» no redundant interleavings: proofs not unnecessarily complex
» compact representation
e through weakly persistent membranes

» linear-size representation in the best case

— More on preference orders in Marcel’s talk



Commutativity Relations

at different abstraction levels

[work in progress; presented at Commute workshop @ PLDI'22]
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Commutativity

Statements &7 and &, commute

: : iff :
(abstract irrelevant details) (preserve relevant detalls]

the order xecution does%tter
(19 behaves similar enough to dos1)

for a given (partial) proof
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Safe Commutativity

Let IT be a proof (a set of Hoare triples).

traces in L£(II)
only equivalent to
(traces proven correct by HJ correct traces

red ,(P) C L(I) I safe wrt. II
P is correct

» commutativity I based on (concrete) semantics: safe wrt. all proofs II
» How to get safe commutativity for a particular proof 11?7
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Safe Abstraction

Let o : Stmt — Stmt.

o = {(d1, ¢2) | [estr)a(st2)] = [a(d2)a(<1)] }

Theorem (Safety)
If o satisfies

» abstraction: [¢] C [a(s)] for all &

» preservation: {@}a(s){y} is valid, for all {p}¢{y} € IO
then I, is safe wrt. II.
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Instance: Projection to the Proof

Idea: Variable = does not occur in the proof = Ignore x when determining commutativity

Abstraction:
» reads of irrelevant variables ~~ nondeterministic values

» assignment to irrelevant variables ~~ nondeterministic assignment (havoc)

Let IT={ {T} yi=x+x {y #1} }. Then

an( yi=x+x ) : “assign y to some even value (nondet.)"

or(fxi=0)) : “do not change y”

Now: aq(’ y:=x+x ) commutes with oy ((%:i=07).
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Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages: Limitations:
P> often allows additional commutativity » theoretically: may lose commutativity
P abstraction easy to compute » practically: introduces quantifiers

Generally: abstract commutativity 2 concrete commutativity
Solution: combine abstract with concrete commutativity
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Combining Commutativity Relations

Observation: Union of safe commutativity relations may be unsafe!

Example:
» precondition: T
» postcondition: z =2
» proof II: {T} x:=1 {THES=HZ=1{ T Hx==2;2:=2 {2z = 2}

x:=1 G x==2;z:32 | ~j, x:=1 [x552;z:=2 | EEEEE

~1, X=525z:22 ) x:=1 (EERiEE



Combining Commutativity Relations

Idea: Sequentially combine commutativity relations



Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

(1) abstract (2) concrete
71 ~1, T2 ~lc 73
T T
proven = correct



Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

(1) abstract (2) concrete
71 ~1, T2 ~lc 73
T T
proven = correct

Combination through new proof rule:

reds'“(P) C L(TT) I, safe wrt. TI
P is correct




Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

(1) abstract (2) concrete
1 ~1, T2 ~lc 73
T T
proven = correct
Combination through new proof rule: (“more abstract than”)

N
red_]j' """ '(p) C £(1) L, ..., I, safe wrt. II L3...91,
P is correct




Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

(1) abstract (2) concrete
1 ~I, T2 ~lc 73
T T
proven = correct
Combination through new proof rule: (“more abstract than”)

N
red_]j' """ '(p) C £(1) L, ..., I, safe wrt. II L3...91,
P is correct

New partial order reduction algorithm for n commutativity relations
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In algorithmic verification, commutativity-based reductions can simplify proofs and allow
efficient proof checking.
Preference Orders: Selection of representatives in reduction

» influences both proof simplicity and proof check efficiency
» trade-off between both aspects

Commutativity Relations: Determines notion of equivalence
» automatically computed and safe wrt. a proof
P> e.g. derived from safe abstractions

> new proof rule and algorithm combine commutativity relations

Questions?



