
Commutativity in Concurrent Program Verification

Dominik Klumpp
klumpp@informatik.uni-freiburg.de

University of Freiburg

joint work with: Azadeh Farzan (University of Toronto)
Andreas Podelski (University of Freiburg)
Marcel Ebbinghaus (University of Freiburg)

AVM 2022

1

Example Program

{ x = y = i = j = 0 }

while (i < n) {
x += A[i];
i++;

}

∥
while (j < n) {

y += A[j];
j++;

}

{ x = y }

2

Naïve Sequentialization

i<
n

x+
=A

[i
]

i+
+

x+
=A

[i
]

i+
+

j<n

y+=A[j]

j++

j<n

y+=A[j]

j>=n

j>=n

j>=n

i<
n

x+
=A

[i
]

i+
+

i>=n

i>=n

i>=n

j<n
y+=A[j]

j+
+

j>=ni>=n

Counterexample:
τ = i<n x+=A[i] j<n y+=A[j] i++ j++ i>=n j>=n

x =
i∑

k=0
A[k] ∧ y =

j∑
k=0

A[k] ∧ i ≤ n ∧ j ≤ n
x = y ∧ i = j x = y ∧ j ≥ nx = y ∧ i ≥ n

x =
i∑

k=0
A[k] ∧ i ≤ n ∧ y = 0 ∧ j = 0 x =

n∑
k=0

A[k] ∧ y =
j∑

k=0
A[k] ∧ j ≤ n

3

Naïve Sequentialization

i<
n

x+
=A

[i
]

i+
+

x+
=A

[i
]

i+
+

j<n

y+=A[j]

j++

j<n

y+=A[j]

j>=n

j>=n

j>=n

i<
n

x+
=A

[i
]

i+
+

i>=n

i>=n

i>=n

j<n
y+=A[j]

j+
+

j>=ni>=n

Counterexample:
τ = i<n x+=A[i] j<n y+=A[j] i++ j++ i>=n j>=n

x =
i∑

k=0
A[k] ∧ y =

j∑
k=0

A[k] ∧ i ≤ n ∧ j ≤ n
x = y ∧ i = j x = y ∧ j ≥ nx = y ∧ i ≥ n

x =
i∑

k=0
A[k] ∧ i ≤ n ∧ y = 0 ∧ j = 0 x =

n∑
k=0

A[k] ∧ y =
j∑

k=0
A[k] ∧ j ≤ n

3

Commutativity-Based Equivalence

Many statements commute: execution order does not matter

Example: x+=A[i] y+=A[j] ∼ y+=A[j] x+=A[i]

⇒ equivalence between program interleavings

Extension: proof-sensitive commutativity

Example: B[k]:=c commutes with B[l]:=d if proof guarantees k ̸= l ∨ c = d
Typical Cases: aliasing, conditional updates (CAS), blocking statements (locks)

Key Property: Correct traces only equivalent to correct traces.

Reduction
One representative trace for each equivalence class

4

Commutativity-Based Equivalence

Many statements commute: execution order does not matter

Example: x+=A[i] y+=A[j] ∼ y+=A[j] x+=A[i]

⇒ equivalence between program interleavings

Extension: proof-sensitive commutativity

Example: B[k]:=c commutes with B[l]:=d if proof guarantees k ̸= l ∨ c = d
Typical Cases: aliasing, conditional updates (CAS), blocking statements (locks)

Key Property: Correct traces only equivalent to correct traces.

Reduction
One representative trace for each equivalence class

4

Commutativity-Based Equivalence

Many statements commute: execution order does not matter

Example: x+=A[i] y+=A[j] ∼ y+=A[j] x+=A[i]

⇒ equivalence between program interleavings

Extension: proof-sensitive commutativity

Example: B[k]:=c commutes with B[l]:=d if proof guarantees k ̸= l ∨ c = d

Typical Cases: aliasing, conditional updates (CAS), blocking statements (locks)

Key Property: Correct traces only equivalent to correct traces.

Reduction
One representative trace for each equivalence class

4

Commutativity-Based Equivalence

Many statements commute: execution order does not matter

Example: x+=A[i] y+=A[j] ∼ y+=A[j] x+=A[i]

⇒ equivalence between program interleavings

Extension: proof-sensitive commutativity

Example: B[k]:=c commutes with B[l]:=d if proof guarantees k ̸= l ∨ c = d
Typical Cases: aliasing, conditional updates (CAS), blocking statements (locks)

Key Property: Correct traces only equivalent to correct traces.

Reduction
One representative trace for each equivalence class

4

Commutativity-Based Equivalence

Many statements commute: execution order does not matter

Example: x+=A[i] y+=A[j] ∼ y+=A[j] x+=A[i]

⇒ equivalence between program interleavings

Extension: proof-sensitive commutativity

Example: B[k]:=c commutes with B[l]:=d if proof guarantees k ̸= l ∨ c = d
Typical Cases: aliasing, conditional updates (CAS), blocking statements (locks)

Key Property: Correct traces only equivalent to correct traces.

Reduction
One representative trace for each equivalence class

4

Commutativity-Based Equivalence

Many statements commute: execution order does not matter

Example: x+=A[i] y+=A[j] ∼ y+=A[j] x+=A[i]

⇒ equivalence between program interleavings

Extension: proof-sensitive commutativity

Example: B[k]:=c commutes with B[l]:=d if proof guarantees k ̸= l ∨ c = d
Typical Cases: aliasing, conditional updates (CAS), blocking statements (locks)

Key Property: Correct traces only equivalent to correct traces.

Reduction
One representative trace for each equivalence class

4

Naïve Sequentialization

i<
n

x+
=A

[i
]

i+
+

x+
=A

[i
]

i+
+

j<n

y+=A[j]

j++

j<n

y+=A[j]

j>=n

j>=n

j>=n

i<
n

x+
=A

[i
]

i+
+

i>=n

i>=n

i>=n

j<n
y+=A[j]

j+
+

j>=ni>=n

Counterexample:
τ = i<n x+=A[i] j<n y+=A[j] i++ j++ i>=n j>=n

x =
i∑

k=0
A[k] ∧ y =

j∑
k=0

A[k] ∧ i ≤ n ∧ j ≤ n
x = y ∧ i = j x = y ∧ j ≥ nx = y ∧ i ≥ n

x =
i∑

k=0
A[k] ∧ i ≤ n ∧ y = 0 ∧ j = 0 x =

n∑
k=0

A[k] ∧ y =
j∑

k=0
A[k] ∧ j ≤ n

5

Reduction I

i<
n

x+
=A

[i
]

i+
+

x+
=A

[i
]

i+
+

j<n

y+=A[j]

j++

j<n

y+=A[j]

j>=n

j>=n

j>=n

i<
n

x+
=A

[i
]

i+
+

i>=n

i>=n

i>=n

j<n
y+=A[j]

j+
+

j>=ni>=n

Counterexample:
τ = i<n x+=A[i] j<n y+=A[j] i++ j++ i>=n j>=n

x =
i∑

k=0
A[k] ∧ y =

j∑
k=0

A[k] ∧ i ≤ n ∧ j ≤ n
x = y ∧ i = j x = y ∧ j ≥ nx = y ∧ i ≥ n

x =
i∑

k=0
A[k] ∧ i ≤ n ∧ y = 0 ∧ j = 0 x =

n∑
k=0

A[k] ∧ y =
j∑

k=0
A[k] ∧ j ≤ n

5

Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program

complex proofs to cover all interleavings
▶ qualitatively: need quantified / nonlinear / . . . assertions
▶ quantitatively: need many distinct proof assertions
⇝ reduction may have simpler proof

exponential proof checking to show that proof covers all interleavings
⇝ compactly represent reductions

[1] Ebbinghaus. Tight Integration of Partial Order Reduction into Trace Abstraction Refinement. BSc Thesis
[2] Klumpp, Dietsch, Heizmann, Schüssele, Ebbinghaus, Farzan and Podelski. Ultimate GemCutter and the

Axes of Generalization - (Competition Contribution). TACAS 2022

6

Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program

complex proofs to cover all interleavings
▶ qualitatively: need quantified / nonlinear / . . . assertions
▶ quantitatively: need many distinct proof assertions

⇝ reduction may have simpler proof

exponential proof checking to show that proof covers all interleavings
⇝ compactly represent reductions

[1] Ebbinghaus. Tight Integration of Partial Order Reduction into Trace Abstraction Refinement. BSc Thesis
[2] Klumpp, Dietsch, Heizmann, Schüssele, Ebbinghaus, Farzan and Podelski. Ultimate GemCutter and the

Axes of Generalization - (Competition Contribution). TACAS 2022

6

Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program

complex proofs to cover all interleavings
▶ qualitatively: need quantified / nonlinear / . . . assertions
▶ quantitatively: need many distinct proof assertions
⇝ reduction may have simpler proof

exponential proof checking to show that proof covers all interleavings
⇝ compactly represent reductions

[1] Ebbinghaus. Tight Integration of Partial Order Reduction into Trace Abstraction Refinement. BSc Thesis
[2] Klumpp, Dietsch, Heizmann, Schüssele, Ebbinghaus, Farzan and Podelski. Ultimate GemCutter and the

Axes of Generalization - (Competition Contribution). TACAS 2022

6

Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program

complex proofs to cover all interleavings
▶ qualitatively: need quantified / nonlinear / . . . assertions
▶ quantitatively: need many distinct proof assertions
⇝ reduction may have simpler proof

exponential proof checking to show that proof covers all interleavings

⇝ compactly represent reductions

[1] Ebbinghaus. Tight Integration of Partial Order Reduction into Trace Abstraction Refinement. BSc Thesis
[2] Klumpp, Dietsch, Heizmann, Schüssele, Ebbinghaus, Farzan and Podelski. Ultimate GemCutter and the

Axes of Generalization - (Competition Contribution). TACAS 2022

6

Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program

complex proofs to cover all interleavings
▶ qualitatively: need quantified / nonlinear / . . . assertions
▶ quantitatively: need many distinct proof assertions
⇝ reduction may have simpler proof

exponential proof checking to show that proof covers all interleavings
⇝ compactly represent reductions

[1] Ebbinghaus. Tight Integration of Partial Order Reduction into Trace Abstraction Refinement. BSc Thesis
[2] Klumpp, Dietsch, Heizmann, Schüssele, Ebbinghaus, Farzan and Podelski. Ultimate GemCutter and the

Axes of Generalization - (Competition Contribution). TACAS 2022

6

Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program

complex proofs to cover all interleavings
▶ qualitatively: need quantified / nonlinear / . . . assertions
▶ quantitatively: need many distinct proof assertions
⇝ reduction may have simpler proof

exponential proof checking to show that proof covers all interleavings
⇝ compactly represent reductions

[1] Ebbinghaus. Tight Integration of Partial Order Reduction into Trace Abstraction Refinement. BSc Thesis
[2] Klumpp, Dietsch, Heizmann, Schüssele, Ebbinghaus, Farzan and Podelski. Ultimate GemCutter and the

Axes of Generalization - (Competition Contribution). TACAS 2022

6

Evaluation
Implemented in Ultimate GemCutter software model checker
Evaluated on SV-COMP’21 benchmarks and benchmarks of Weaver tool

200 400 600 800 1,000 1,200

10

100

4

900

CPU time (s)

Automizer GemCutter

200 400 600 800 1,000 1,200

1,000

200

8,000

Memory (MB)

analyzed 50 more programs using significantly less time (≈ 50 %), memory (≈ 27 %),
and refinement rounds (≈ 64 %)

7

Reductions

Reduction: One representative trace for each equivalence class

redI
⪯(P)

program to be verified

commutativity relation I

defines equivalence classes

preference order ⪯
selects representatives for each equivalence class

8

Reductions

Reduction: One representative trace for each equivalence class

redI
⪯(P)

program to be verified

commutativity relation I

defines equivalence classes

preference order ⪯
selects representatives for each equivalence class

8

Reductions

Reduction: One representative trace for each equivalence class

redI
⪯(P)

program to be verified

commutativity relation I

defines equivalence classes

preference order ⪯
selects representatives for each equivalence class

8

Reductions

Reduction: One representative trace for each equivalence class

redI
⪯(P)

program to be verified

commutativity relation I

defines equivalence classes

preference order ⪯
selects representatives for each equivalence class

8

Reductions

Reduction: One representative trace for each equivalence class

redI
⪯(P)

program to be verified

commutativity relation I

defines equivalence classes

preference order ⪯
selects representatives for each equivalence class

8

Preference Orders
Selecting the right representatives

[3] Farzan, Klumpp and Podelski. Sound sequentialization for concurrent program verification. PLDI 2022

9

Reduction I

i<
n

x+
=A

[i
]

i+
+

x+
=A

[i
]

i+
+

j<n

y+=A[j]

j++

j<n

y+=A[j]

j>=n

j>=n

j>=n

i<
n

x+
=A

[i
]

i+
+

i>=n

i>=n

i>=n

j<n
y+=A[j]

j+
+

j>=ni>=n

Counterexample:
τ = i<n x+=A[i] j<n y+=A[j] i++ j++ i>=n j>=n

x =
i∑

k=0
A[k] ∧ y =

j∑
k=0

A[k] ∧ i ≤ n ∧ j ≤ n
x = y ∧ i = j x = y ∧ j ≥ nx = y ∧ i ≥ n

x =
i∑

k=0
A[k] ∧ i ≤ n ∧ y = 0 ∧ j = 0 x =

n∑
k=0

A[k] ∧ y =
j∑

k=0
A[k] ∧ j ≤ n

10

Reduction I

i<
n

x+
=A

[i
]

i+
+

x+
=A

[i
]

i+
+

j<n

y+=A[j]

j++

j<n

y+=A[j]

j>=n

j>=n

j>=n

i<
n

x+
=A

[i
]

i+
+

i>=n

i>=n

i>=n

j<n
y+=A[j]

j+
+

j>=ni>=n

Counterexample:
τ = i<n x+=A[i] j<n y+=A[j] i++ j++ i>=n j>=n

x =
i∑

k=0
A[k] ∧ y =

j∑
k=0

A[k] ∧ i ≤ n ∧ j ≤ n
x = y ∧ i = j x = y ∧ j ≥ nx = y ∧ i ≥ n

x =
i∑

k=0
A[k] ∧ i ≤ n ∧ y = 0 ∧ j = 0 x =

n∑
k=0

A[k] ∧ y =
j∑

k=0
A[k] ∧ j ≤ n

10

Reduction II

i<
n

x+
=A

[i
]

i+
+

x+
=A

[i
]

i+
+

j<n

y+=A[j]

j++

j<n

y+=A[j]

j>=n

j>=n

j>=n

i<
n

x+
=A

[i
]

i+
+

i>=n

i>=n

i>=n

j<n
y+=A[j]

j+
+

j>=ni>=n

Counterexample:
τ = i<n x+=A[i] j<n y+=A[j] i++ j++ i>=n j>=n

x =
i∑

k=0
A[k] ∧ y =

j∑
k=0

A[k] ∧ i ≤ n ∧ j ≤ n
x = y ∧ i = j x = y ∧ j ≥ nx = y ∧ i ≥ n

x =
i∑

k=0
A[k] ∧ i ≤ n ∧ y = 0 ∧ j = 0 x =

n∑
k=0

A[k] ∧ y =
j∑

k=0
A[k] ∧ j ≤ n

11

Reduction II

i<
n

x+
=A

[i
]

i+
+

x+
=A

[i
]

i+
+

j<n

y+=A[j]

j++

j<n

y+=A[j]

j>=n

j>=n

j>=n

i<
n

x+
=A

[i
]

i+
+

i>=n

i>=n

i>=n

j<n
y+=A[j]

j+
+

j>=ni>=n

Counterexample:
τ = i<n x+=A[i] j<n y+=A[j] i++ j++ i>=n j>=n

x =
i∑

k=0
A[k] ∧ y =

j∑
k=0

A[k] ∧ i ≤ n ∧ j ≤ n
x = y ∧ i = j x = y ∧ j ≥ nx = y ∧ i ≥ n

x =
i∑

k=0
A[k] ∧ i ≤ n ∧ y = 0 ∧ j = 0 x =

n∑
k=0

A[k] ∧ y =
j∑

k=0
A[k] ∧ j ≤ n

11

Characterizing Reductions

Preference orders characterize choice of reduction

▶ order interleavings from most preferred (smallest) to least preferred (greatest)
▶ keep only most preferred representative per equivalence class

redI
⪯(P) := { min⪯[τ]∼I | τ ∈ P }

▶ independent of commutativity
▶ same scheme of preference order applies to different programs

12

Characterizing Reductions

Preference orders characterize choice of reduction
▶ order interleavings from most preferred (smallest) to least preferred (greatest)

▶ keep only most preferred representative per equivalence class

redI
⪯(P) := { min⪯[τ]∼I | τ ∈ P }

▶ independent of commutativity
▶ same scheme of preference order applies to different programs

12

Characterizing Reductions

Preference orders characterize choice of reduction
▶ order interleavings from most preferred (smallest) to least preferred (greatest)
▶ keep only most preferred representative per equivalence class

redI
⪯(P) := { min⪯[τ]∼I | τ ∈ P }

▶ independent of commutativity
▶ same scheme of preference order applies to different programs

12

Characterizing Reductions

Preference orders characterize choice of reduction
▶ order interleavings from most preferred (smallest) to least preferred (greatest)
▶ keep only most preferred representative per equivalence class

redI
⪯(P) := { min⪯[τ]∼I | τ ∈ P }

▶ independent of commutativity

▶ same scheme of preference order applies to different programs

12

Characterizing Reductions

Preference orders characterize choice of reduction
▶ order interleavings from most preferred (smallest) to least preferred (greatest)
▶ keep only most preferred representative per equivalence class

redI
⪯(P) := { min⪯[τ]∼I | τ ∈ P }

▶ independent of commutativity
▶ same scheme of preference order applies to different programs

12

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:

▶ finite representation as control flow graphs

constructed using variant of sleep set technique

▶ no redundant interleavings: proofs not unnecessarily complex
▶ compact representation

through weakly persistent membranes

▶ linear-size representation in the best case

→ More on preference orders in Marcel’s talk

13

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:
▶ finite representation as control flow graphs

constructed using variant of sleep set technique
▶ no redundant interleavings: proofs not unnecessarily complex
▶ compact representation

through weakly persistent membranes

▶ linear-size representation in the best case

→ More on preference orders in Marcel’s talk

13

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:
▶ finite representation as control flow graphs

constructed using variant of sleep set technique

▶ no redundant interleavings: proofs not unnecessarily complex
▶ compact representation

through weakly persistent membranes

▶ linear-size representation in the best case

→ More on preference orders in Marcel’s talk

13

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:
▶ finite representation as control flow graphs

constructed using variant of sleep set technique
▶ no redundant interleavings: proofs not unnecessarily complex

▶ compact representation

through weakly persistent membranes

▶ linear-size representation in the best case

→ More on preference orders in Marcel’s talk

13

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:
▶ finite representation as control flow graphs

constructed using variant of sleep set technique
▶ no redundant interleavings: proofs not unnecessarily complex
▶ compact representation

through weakly persistent membranes
▶ linear-size representation in the best case

→ More on preference orders in Marcel’s talk

13

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:
▶ finite representation as control flow graphs

constructed using variant of sleep set technique
▶ no redundant interleavings: proofs not unnecessarily complex
▶ compact representation

through weakly persistent membranes

▶ linear-size representation in the best case

→ More on preference orders in Marcel’s talk

13

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:
▶ finite representation as control flow graphs

constructed using variant of sleep set technique
▶ no redundant interleavings: proofs not unnecessarily complex
▶ compact representation

through weakly persistent membranes
▶ linear-size representation in the best case

→ More on preference orders in Marcel’s talk

13

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:
▶ finite representation as control flow graphs

constructed using variant of sleep set technique
▶ no redundant interleavings: proofs not unnecessarily complex
▶ compact representation

through weakly persistent membranes
▶ linear-size representation in the best case

→ More on preference orders in Marcel’s talk

13

Commutativity Relations
at different abstraction levels

[work in progress; presented at Commute workshop @ PLDI’22]

14

Commutativity

Statements st1 and st2 commute

iff

neither statement writes a variable accessed by the other
(“disjoint” variable accesses)

for all programs and wrt. all properties

Formally: read(st1) ∩ write(st2) = write(st1) ∩ read(st2) = write(st1) ∩ write(st2) = ∅

abstract irrelevant details preserve relevant details

15

Commutativity

Statements st1 and st2 commute

iff

the order of execution does not matter

(st1st2 behaves exactly like st2st1)
for all programs and wrt. all properties

Formally: read(st1) ∩ write(st2) = write(st1) ∩ read(st2) = write(st1) ∩ write(st2) = ∅

abstract irrelevant details preserve relevant details

15

Commutativity

Statements st1 and st2 commute

iff

the order of execution does not matter
(st1st2 behaves exactly like st2st1)

for all programs and wrt. all properties

Formally: Jst1st2K = Jst2st1K

abstract irrelevant details preserve relevant details

15

Commutativity

Statements st1 and st2 commute

iff

the order of execution does not matter
(st1st2 behaves exactly like st2st1)

for all programs and wrt. all properties

Formally: Jst1st2K = Jst2st1K

abstract irrelevant details preserve relevant details

16

Commutativity

Statements st1 and st2 commute

iff

the order of execution does not matter
(st1st2 behaves similar enough to st2st1)

for a given program and property

Formally: Jst1st2K = Jst2st1K

abstract irrelevant details preserve relevant details

16

Commutativity

Statements st1 and st2 commute

iff

the order of execution does not matter
(st1st2 behaves similar enough to st2st1)

for a given program and property

Formally: Jst1st2K = Jst2st1K

abstract irrelevant details preserve relevant details

16

Commutativity

Statements st1 and st2 commute

iff

the order of execution does not matter
(st1st2 behaves similar enough to st2st1)

for a given program and property

Formally: Jst1st2K = Jst2st1K

abstract irrelevant details preserve relevant details

16

Commutativity

Statements st1 and st2 commute

iff

the order of execution does not matter
(st1st2 behaves similar enough to st2st1)

for a given (partial) proof

Formally: Jst1st2K = Jst2st1K

abstract irrelevant details preserve relevant details

16

Safe Commutativity

Let Π be a proof (a set of Hoare triples).

redI⪯(P) ⊆ L(Π)
P is correct

▶ commutativity IC based on (concrete) semantics: safe wrt. all proofs Π
▶ How to get safe commutativity for a particular proof Π?

traces proven correct by Πtraces proven correct by Π

traces in L(Π)
only equivalent to

correct traces

17

Safe Commutativity

Let Π be a proof (a set of Hoare triples).

redI⪯(P) ⊆ L(Π)
P is correct

▶ commutativity IC based on (concrete) semantics: safe wrt. all proofs Π
▶ How to get safe commutativity for a particular proof Π?

traces proven correct by Πtraces proven correct by Π

traces in L(Π)
only equivalent to

correct traces

17

Safe Commutativity

Let Π be a proof (a set of Hoare triples).

redI⪯(P) ⊆ L(Π) I safe wrt. Π
P is correct

▶ commutativity IC based on (concrete) semantics: safe wrt. all proofs Π
▶ How to get safe commutativity for a particular proof Π?

traces proven correct by Πtraces proven correct by Π

traces in L(Π)
only equivalent to

correct traces

17

Safe Commutativity

Let Π be a proof (a set of Hoare triples).

redI⪯(P) ⊆ L(Π) I safe wrt. Π
P is correct

▶ commutativity IC based on (concrete) semantics: safe wrt. all proofs Π
▶ How to get safe commutativity for a particular proof Π?

traces proven correct by Πtraces proven correct by Π

traces in L(Π)
only equivalent to

correct traces

17

Safe Commutativity

Let Π be a proof (a set of Hoare triples).

redI⪯(P) ⊆ L(Π) I safe wrt. Π
P is correct

▶ commutativity IC based on (concrete) semantics: safe wrt. all proofs Π

▶ How to get safe commutativity for a particular proof Π?

traces proven correct by Πtraces proven correct by Π

traces in L(Π)
only equivalent to

correct traces

17

Safe Commutativity

Let Π be a proof (a set of Hoare triples).

redI⪯(P) ⊆ L(Π) I safe wrt. Π
P is correct

▶ commutativity IC based on (concrete) semantics: safe wrt. all proofs Π
▶ How to get safe commutativity for a particular proof Π?

traces proven correct by Πtraces proven correct by Π

traces in L(Π)
only equivalent to

correct traces

17

Safe Abstraction

Let α : Stmt → Stmt.

Iα := { (st1, st2) | Jα(st1)α(st2)K = Jα(st2)α(st1)K }

Theorem (Safety)
If α satisfies
▶ abstraction: JstK ⊆ Jα(st)K for all st
▶ preservation: {φ}α(st){ψ} is valid, for all {φ}st{ψ} ∈ Π

then Iα is safe wrt. Π.

18

Safe Abstraction

Let α : Stmt → Stmt.

Iα := { (st1, st2) | Jα(st1)α(st2)K = Jα(st2)α(st1)K }

Theorem (Safety)
If α satisfies
▶ abstraction: JstK ⊆ Jα(st)K for all st
▶ preservation: {φ}α(st){ψ} is valid, for all {φ}st{ψ} ∈ Π

then Iα is safe wrt. Π.

18

Safe Abstraction

Let α : Stmt → Stmt.

Iα := { (st1, st2) | Jα(st1)α(st2)K = Jα(st2)α(st1)K }

Theorem (Safety)
If α satisfies
▶ abstraction: JstK ⊆ Jα(st)K for all st
▶ preservation: {φ}α(st){ψ} is valid, for all {φ}st{ψ} ∈ Π

then Iα is safe wrt. Π.

18

Instance: Projection to the Proof

Idea: Variable x does not occur in the proof ⇒ Ignore x when determining commutativity

Abstraction:
▶ reads of irrelevant variables ⇝ nondeterministic values
▶ assignment to irrelevant variables ⇝ nondeterministic assignment (havoc)

Example
Let Π =

{
{⊤} y:=x+x {y ̸= 1}

}
. Then

αΠ(y:=x+x) : “assign y to some even value (nondet.)”
αΠ(x:=0) : “do not change y”

Now: αΠ(y:=x+x) commutes with αΠ(x:=0).

19

Instance: Projection to the Proof

Idea: Variable x does not occur in the proof ⇒ Ignore x when determining commutativity

Abstraction:
▶ reads of irrelevant variables ⇝ nondeterministic values
▶ assignment to irrelevant variables ⇝ nondeterministic assignment (havoc)

Example
Let Π =

{
{⊤} y:=x+x {y ̸= 1}

}
. Then

αΠ(y:=x+x) : “assign y to some even value (nondet.)”
αΠ(x:=0) : “do not change y”

Now: αΠ(y:=x+x) commutes with αΠ(x:=0).

19

Instance: Projection to the Proof

Idea: Variable x does not occur in the proof ⇒ Ignore x when determining commutativity

Abstraction:
▶ reads of irrelevant variables ⇝ nondeterministic values
▶ assignment to irrelevant variables ⇝ nondeterministic assignment (havoc)

Example
Let Π =

{
{⊤} y:=x+x {y ̸= 1}

}
. Then

αΠ(y:=x+x) : “assign y to some even value (nondet.)”
αΠ(x:=0) : “do not change y”

Now: αΠ(y:=x+x) commutes with αΠ(x:=0).

19

Instance: Projection to the Proof

Idea: Variable x does not occur in the proof ⇒ Ignore x when determining commutativity

Abstraction:
▶ reads of irrelevant variables ⇝ nondeterministic values
▶ assignment to irrelevant variables ⇝ nondeterministic assignment (havoc)

Example
Let Π =

{
{⊤} y:=x+x {y ̸= 1}

}
. Then

αΠ(y:=x+x) : “assign y to some even value (nondet.)”

αΠ(x:=0) : “do not change y”

Now: αΠ(y:=x+x) commutes with αΠ(x:=0).

19

Instance: Projection to the Proof

Idea: Variable x does not occur in the proof ⇒ Ignore x when determining commutativity

Abstraction:
▶ reads of irrelevant variables ⇝ nondeterministic values
▶ assignment to irrelevant variables ⇝ nondeterministic assignment (havoc)

Example
Let Π =

{
{⊤} y:=x+x {y ̸= 1}

}
. Then

αΠ(y:=x+x) : “assign y to some even value (nondet.)”
αΠ(x:=0) : “do not change y”

Now: αΠ(y:=x+x) commutes with αΠ(x:=0).

19

Instance: Projection to the Proof

Idea: Variable x does not occur in the proof ⇒ Ignore x when determining commutativity

Abstraction:
▶ reads of irrelevant variables ⇝ nondeterministic values
▶ assignment to irrelevant variables ⇝ nondeterministic assignment (havoc)

Example
Let Π =

{
{⊤} y:=x+x {y ̸= 1}

}
. Then

αΠ(y:=x+x) : “assign y to some even value (nondet.)”
αΠ(x:=0) : “do not change y”

Now: αΠ(y:=x+x) commutes with αΠ(x:=0).

19

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages:

▶ often allows additional commutativity
▶ abstraction easy to compute

Limitations:

▶ theoretically: may lose commutativity
▶ practically: introduces quantifiers

Generally: abstract commutativity ⊉ concrete commutativity
Solution: combine abstract with concrete commutativity

20

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages:

▶ often allows additional commutativity
▶ abstraction easy to compute

Limitations:

▶ theoretically: may lose commutativity
▶ practically: introduces quantifiers

Generally: abstract commutativity ⊉ concrete commutativity
Solution: combine abstract with concrete commutativity

20

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages:
▶ often allows additional commutativity

▶ abstraction easy to compute

Limitations:

▶ theoretically: may lose commutativity
▶ practically: introduces quantifiers

Generally: abstract commutativity ⊉ concrete commutativity
Solution: combine abstract with concrete commutativity

20

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages:
▶ often allows additional commutativity
▶ abstraction easy to compute

Limitations:

▶ theoretically: may lose commutativity
▶ practically: introduces quantifiers

Generally: abstract commutativity ⊉ concrete commutativity
Solution: combine abstract with concrete commutativity

20

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages:
▶ often allows additional commutativity
▶ abstraction easy to compute

Limitations:
▶ theoretically: may lose commutativity

▶ practically: introduces quantifiers

Generally: abstract commutativity ⊉ concrete commutativity
Solution: combine abstract with concrete commutativity

20

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages:
▶ often allows additional commutativity
▶ abstraction easy to compute

Limitations:
▶ theoretically: may lose commutativity
▶ practically: introduces quantifiers

Generally: abstract commutativity ⊉ concrete commutativity
Solution: combine abstract with concrete commutativity

20

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages:
▶ often allows additional commutativity
▶ abstraction easy to compute

Limitations:
▶ theoretically: may lose commutativity
▶ practically: introduces quantifiers

Generally: abstract commutativity ⊉ concrete commutativity

Solution: combine abstract with concrete commutativity

20

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages:
▶ often allows additional commutativity
▶ abstraction easy to compute

Limitations:
▶ theoretically: may lose commutativity
▶ practically: introduces quantifiers

Generally: abstract commutativity ⊉ concrete commutativity
Solution: combine abstract with concrete commutativity

20

Combining Commutativity Relations

Observation: Union of safe commutativity relations may be unsafe!

Example:
▶ precondition: ⊤
▶ postcondition: z = 2
▶ proof Π: {⊤} x:=1 {⊤} x==1;z:=1 {⊤} x==2;z:=2 {z = 2}

x:=1 x==1;z:=1 x==2;z:=2 ∼IC
x:=1 x==2;z:=2 x==1;z:=1

∼Iα x==2;z:=2 x:=1 x==1;z:=1

21

Combining Commutativity Relations

Observation: Union of safe commutativity relations may be unsafe!

Example:
▶ precondition: ⊤
▶ postcondition: z = 2
▶ proof Π: {⊤} x:=1 {⊤} x==1;z:=1 {⊤} x==2;z:=2 {z = 2}

x:=1 x==1;z:=1 x==2;z:=2 ∼IC
x:=1 x==2;z:=2 x==1;z:=1

∼Iα x==2;z:=2 x:=1 x==1;z:=1

21

Combining Commutativity Relations

Observation: Union of safe commutativity relations may be unsafe!

Example:
▶ precondition: ⊤
▶ postcondition: z = 2
▶ proof Π: {⊤} x:=1 {⊤} x==1;z:=1 {⊤} x==2;z:=2 {z = 2}

x:=1 x==1;z:=1 x==2;z:=2

∼IC
x:=1 x==2;z:=2 x==1;z:=1

∼Iα x==2;z:=2 x:=1 x==1;z:=1

21

Combining Commutativity Relations

Observation: Union of safe commutativity relations may be unsafe!

Example:
▶ precondition: ⊤
▶ postcondition: z = 2
▶ proof Π: {⊤} x:=1 {⊤} x==1;z:=1 {⊤} x==2;z:=2 {z = 2}

x:=1 x==1;z:=1 x==2;z:=2 ∼IC
x:=1 x==2;z:=2 x==1;z:=1

∼Iα x==2;z:=2 x:=1 x==1;z:=1

21

Combining Commutativity Relations

Observation: Union of safe commutativity relations may be unsafe!

Example:
▶ precondition: ⊤
▶ postcondition: z = 2
▶ proof Π: {⊤} x:=1 {⊤} x==1;z:=1 {⊤} x==2;z:=2 {z = 2}

x:=1 x==1;z:=1 x==2;z:=2 ∼IC
x:=1 x==2;z:=2 x==1;z:=1

∼Iα x==2;z:=2 x:=1 x==1;z:=1

21

Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

τ1 ∼Iα τ2 ∼IC τ3
(1) abstract (2) concrete

proven correct⇒

Combination through new proof rule:

redIα,IC
⪯ (P) ⊆ L(Π) Iα safe wrt. Π

P is correct

New partial order reduction algorithm for n commutativity relations

“more abstract than”

22

Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

τ1 ∼Iα τ2 ∼IC τ3
(1) abstract (2) concrete

proven correct⇒

Combination through new proof rule:

redIα,IC
⪯ (P) ⊆ L(Π) Iα safe wrt. Π

P is correct

New partial order reduction algorithm for n commutativity relations

“more abstract than”

22

Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

τ1 ∼Iα τ2 ∼IC τ3
(1) abstract (2) concrete

proven correct⇒

Combination through new proof rule:

redIα,IC
⪯ (P) ⊆ L(Π) Iα safe wrt. Π

P is correct

New partial order reduction algorithm for n commutativity relations

“more abstract than”

22

Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

τ1 ∼Iα τ2 ∼IC τ3
(1) abstract (2) concrete

proven correct⇒

Combination through new proof rule:

redI1,...,In
⪯ (P) ⊆ L(Π) I1, . . . , In safe wrt. Π I1 ⋑ . . . ⋑ In

P is correct

New partial order reduction algorithm for n commutativity relations

“more abstract than”

22

Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

τ1 ∼Iα τ2 ∼IC τ3
(1) abstract (2) concrete

proven correct⇒

Combination through new proof rule:

redI1,...,In
⪯ (P) ⊆ L(Π) I1, . . . , In safe wrt. Π I1 ⋑ . . . ⋑ In

P is correct

New partial order reduction algorithm for n commutativity relations

“more abstract than”

22

Conclusion

23

Summary
In algorithmic verification, commutativity-based reductions can simplify proofs and allow
efficient proof checking.

Preference Orders: Selection of representatives in reduction
▶ influences both proof simplicity and proof check efficiency
▶ trade-off between both aspects

Commutativity Relations: Determines notion of equivalence
▶ automatically computed and safe wrt. a proof
▶ e.g. derived from safe abstractions
▶ new proof rule and algorithm combine commutativity relations

Questions?

24

Summary
In algorithmic verification, commutativity-based reductions can simplify proofs and allow
efficient proof checking.

Preference Orders: Selection of representatives in reduction
▶ influences both proof simplicity and proof check efficiency
▶ trade-off between both aspects

Commutativity Relations: Determines notion of equivalence
▶ automatically computed and safe wrt. a proof
▶ e.g. derived from safe abstractions
▶ new proof rule and algorithm combine commutativity relations

Questions?

24

Summary
In algorithmic verification, commutativity-based reductions can simplify proofs and allow
efficient proof checking.

Preference Orders: Selection of representatives in reduction
▶ influences both proof simplicity and proof check efficiency
▶ trade-off between both aspects

Commutativity Relations: Determines notion of equivalence
▶ automatically computed and safe wrt. a proof
▶ e.g. derived from safe abstractions
▶ new proof rule and algorithm combine commutativity relations

Questions?

24

Summary
In algorithmic verification, commutativity-based reductions can simplify proofs and allow
efficient proof checking.

Preference Orders: Selection of representatives in reduction
▶ influences both proof simplicity and proof check efficiency
▶ trade-off between both aspects

Commutativity Relations: Determines notion of equivalence
▶ automatically computed and safe wrt. a proof
▶ e.g. derived from safe abstractions
▶ new proof rule and algorithm combine commutativity relations

Questions?
24

