Commutativity in Concurrent Program Verification

Dominik Klumpp
klumpp@informatik.uni-freiburg.de
University of Freiburg

joint work with: Azadeh Farzan (University of Toronto)
Andreas Podelski (University of Freiburg)
Marcel Ebbinghaus (University of Freiburg)

AVM 2022

Example Program

{r=y=i=j=0}

while (i < n) { while (j < n) {
x += A[i]; H y += A[j];
i++; JH+;

} }

c
.0
)
(L]
N
.
)
c
()
>
(on
(]
Vp)]
(D]
=
T
=

i>=n

j>=n

j>=n

i>=n

Naive Sequentialization v = Z AR Ay = ﬁj A Ai<nAj<n

k=0 k=0

O j>=n M — N

i>=n

j>=n

Q

Commutativity-Based Equivalence

Many statements commute: execution order does not matter

Example: [x+=A[i] (y+=ALj]1) ~ (yt=ALj]) x+=A[i]

Commutativity-Based Equivalence

Many statements commute: execution order does not matter
Example: [x+=A[i] (y+=A[j]1) ~ (y+=A[j]) x+=A[i]

= equivalence between program interleavings

Commutativity-Based Equivalence

Many statements commute: execution order does not matter

Example: [x+=A[i] (y+=A[j]1) ~ (y+=A[j]) x+=A[i]
= equivalence between program interleavings
Extension: proof-sensitive commutativity

Example: | B[k]:=c commutes with (B[1]:=d if proof guarantees k #1Vc=d

Commutativity-Based Equivalence

Many statements commute: execution order does not matter

Example: [x+=A[i] (y+=A[j]1) ~ (y+=A[j]) x+=A[i]
= equivalence between program interleavings
Extension: proof-sensitive commutativity

Example: | B[k]:=c commutes with (B[1]:=d if proof guarantees k #1Vc=d
Typical Cases: aliasing, conditional updates (CAS), blocking statements (locks)

Commutativity-Based Equivalence

Many statements commute: execution order does not matter

Example: [x+=A[i] (y+=A[j]1) ~ (y+=A[j]) x+=A[i]
= equivalence between program interleavings
Extension: proof-sensitive commutativity

Example: | B[k]:=c commutes with (B[1]:=d if proof guarantees k #1Vc=d
Typical Cases: aliasing, conditional updates (CAS), blocking statements (locks)

Key Property: Correct traces only equivalent to correct traces.

Commutativity-Based Equivalence

Many statements commute: execution order does not matter

Example: [x+=A[i] (y+=A[j]1) ~ (y+=A[j]) x+=A[i]
= equivalence between program interleavings
Extension: proof-sensitive commutativity

Example: | B[k]:=c commutes with (B[1]:=d if proof guarantees k #1Vc=d
Typical Cases: aliasing, conditional updates (CAS), blocking statements (locks)

Key Property: Correct traces only equivalent to correct traces.

One representative trace for each equivalence class

c
.0
)
(L]
N
.
)
c
()
>
(on
(]
Vp)]
(D]
=
T
=

i>=n

j>=n

j>=n

i>=n

c
.9
+
O
=
o]
Q
o

i>=n

++0

j>=n

Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program

Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program

complex proofs to cover all interleavings
» qualitatively: need quantified / nonlinear / ... assertions

» quantitatively: need many distinct proof assertions

Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program

complex proofs to cover all interleavings
» qualitatively: need quantified / nonlinear / ... assertions
» quantitatively: need many distinct proof assertions

~> reduction may have simpler proof

Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program

complex proofs to cover all interleavings
» qualitatively: need quantified / nonlinear / ... assertions
» quantitatively: need many distinct proof assertions

~> reduction may have simpler proof

exponential proof checking to show that proof covers all interleavings

Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program

complex proofs to cover all interleavings
» qualitatively: need quantified / nonlinear / ... assertions
» quantitatively: need many distinct proof assertions

~> reduction may have simpler proof

exponential proof checking to show that proof covers all interleavings
~» compactly represent reductions

Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program

complex proofs to cover all interleavings
» qualitatively: need quantified / nonlinear / ... assertions
» quantitatively: need many distinct proof assertions

~> reduction may have simpler proof

exponential proof checking to show that proof covers all interleavings
~» compactly represent reductions

[1] Ebbinghaus. Tight Integration of Partial Order Reduction into Trace Abstraction Refinement. BSc Thesis
[2] Klumpp, Dietsch, Heizmann, Schiissele, Ebbinghaus, Farzan and Podelski. Ultimate GemCutter and the
Axes of Generalization - (Competition Contribution). TACAS 2022

Evaluation

Implemented in ULTIMATE GEMCUTTER software model checker
Evaluated on SV-COMP’21 benchmarks and benchmarks of WEAVER tool

’ ---------- AUTOMIZER —— GEMCUTTER ‘

900

‘ 8,000 ‘ ‘
{ Memory (MB)

T
0O
0|
c
[=d
3
(0]

—~
wn
N

100

1,000

10

L L L L L 200 L L L L L
200 400 600 800 1,000 1,200 200 400 600 800 1,000 1,200

50 %), memory (=~ 27 %),

4

analyzed 50 more programs using significantly less time (~
and refinement rounds (=~ 64 %)

Reduction: One representative trace for each equivalence class

Reduction: One representative trace for each equivalence class

red’. (P)

Reduction: One representative trace for each equivalence class

program to be verified

red’. (P)

Reduction: One representative trace for each equivalence class

commutativity relation /
defines equivalence classes

program to be verified

red’. (P)

Reduction: One representative trace for each equivalence class

commutativity relation /
defines equivalence classes

program to be verified

red’. (P)
7

preference order <
selects representatives for each equivalence class

Preference Orders

Selecting the right representatives

[3] Farzan, Klumpp and Podelski. Sound sequentialization for concurrent program verification. PLDI 2022

c
.9
+
O
=
o]
Q
o

i>=n

++0

j>=n

Reduction | 5= zl:A[k}/\ign/\y:O/\j:O

k=0

@ j>=n

++0

j>=n

j>=n

i>=n

[
.9
)
O
=
e
Q
o

c
.9
+
O
=
o]
Q
o

i>=n

++0

Q
j<n y+=A[j]
. XX
S
1S
)
o
=
A
™
BT X [T1v=+x
_/
+4T

j>=n

i>=n

Characterizing Reductions

Preference orders characterize choice of reduction

Characterizing Reductions

Preference orders characterize choice of reduction

» order interleavings from most preferred (smallest) to least preferred (greatest)

Characterizing Reductions

Preference orders characterize choice of reduction
» order interleavings from most preferred (smallest) to least preferred (greatest)

P> keep only most preferred representative per equivalence class

redé(P) = {min<[7]., |TE€P}

Characterizing Reductions

Preference orders characterize choice of reduction
» order interleavings from most preferred (smallest) to least preferred (greatest)

P> keep only most preferred representative per equivalence class

redé(P) = {min<[7]., |TE€P}

» independent of commutativity

Characterizing Reductions

Preference orders characterize choice of reduction
» order interleavings from most preferred (smallest) to least preferred (greatest)

P> keep only most preferred representative per equivalence class

redé(P) = {min<[7]., |TE€P}

» independent of commutativity

P> same scheme of preference order applies to different programs

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:
» finite representation as control flow graphs

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:
» finite representation as control flow graphs
e constructed using variant of sleep set technique

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:
» finite representation as control flow graphs
e constructed using variant of sleep set technique

» no redundant interleavings: proofs not unnecessarily complex

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:
» finite representation as control flow graphs
e constructed using variant of sleep set technique
» no redundant interleavings: proofs not unnecessarily complex
» compact representation

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:
» finite representation as control flow graphs
e constructed using variant of sleep set technique
» no redundant interleavings: proofs not unnecessarily complex
» compact representation
e through weakly persistent membranes

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:
» finite representation as control flow graphs
e constructed using variant of sleep set technique
» no redundant interleavings: proofs not unnecessarily complex
» compact representation
e through weakly persistent membranes

» linear-size representation in the best case

Positional Lexicographic Preference Orders

Algorithmic construction of reductions using techniques from partial order reduction:
» finite representation as control flow graphs
e constructed using variant of sleep set technique
» no redundant interleavings: proofs not unnecessarily complex
» compact representation
e through weakly persistent membranes

» linear-size representation in the best case

— More on preference orders in Marcel’s talk

Commutativity Relations

at different abstraction levels

[work in progress; presented at Commute workshop @ PLDI'22]

Commutativity

Statements &7 and &> commute

iff

Commutativity

Statements &7 and &> commute
iff

the order of execution does not matter

Commutativity

Statements &7 and &> commute
iff

the order of execution does not matter
(159 behaves exactly like dos1)

Formally: [s1 2] = [das1]

Commutativity

Statements &7 and &> commute
iff

the order of execution does not matter
(159 behaves exactly like dos1)

for all programs and wrt. all properties

Formally: [s1 2] = [das1]

Commutativity

Statements &7 and &> commute
iff

the order of execution does not matter
(159 behaves similar enough to dos1)

for a given program and property

Commutativity

Statements &7 and &, commute

iff

(abstract irrelevant details)

the order xecution does not matter
(159 behaves similar enough to dos1)

for a given program and property

Commutativity

Statements &7 and &, commute

: : iff :
(abstract irrelevant details) (preserve relevant detalls]

the order xecution does%tter
(19 behaves similar enough to dos1)

for a given program and property

Commutativity

Statements &7 and &, commute

: : iff :
(abstract irrelevant details) (preserve relevant detalls]

the order xecution does%tter
(19 behaves similar enough to dos1)

for a given (partial) proof

Safe Commutativity

Let IT be a proof (a set of Hoare triples).

red’,(P) C L(II)
P is correct

Safe Commutativity

Let IT be a proof (a set of Hoare triples).

(traces proven correct by H]

red’,(P) C L(II)
P is correct

Safe Commutativity

Let IT be a proof (a set of Hoare triples).

(traces proven correct by H]

red ,(P) C L(I) I safe wrt. II
P is correct

Safe Commutativity

Let IT be a proof (a set of Hoare triples).

traces in L£(II)
only equivalent to
(traces proven correct by HJ correct traces

red ,(P) C L(I) I safe wrt. II
P is correct

Safe Commutativity

Let IT be a proof (a set of Hoare triples).

traces in L£(II)
only equivalent to
(traces proven correct by HJ correct traces

red ,(P) C L(I) I safe wrt. II
P is correct

» commutativity I based on (concrete) semantics: safe wrt. all proofs II

Safe Commutativity

Let IT be a proof (a set of Hoare triples).

traces in L£(II)
only equivalent to
(traces proven correct by HJ correct traces

red ,(P) C L(I) I safe wrt. II
P is correct

» commutativity I based on (concrete) semantics: safe wrt. all proofs II
» How to get safe commutativity for a particular proof 11?7

Safe Abstraction

Let o : Stmt — Stmt.

Safe Abstraction

Let o : Stmt — Stmt.

o = {(d1, ¢2) | [estr)a(st2)] = [a(d2)a(<1)] }

Safe Abstraction

Let o : Stmt — Stmt.

o = {(d1, ¢2) | [estr)a(st2)] = [a(d2)a(<1)] }

Theorem (Safety)
If o satisfies

» abstraction: [¢] C [a(s)] for all &

» preservation: {@}a(s){y} is valid, for all {p}¢{y} € IO
then I, is safe wrt. II.

Instance: Projection to the Proof

Idea: Variable = does not occur in the proof = Ignore x when determining commutativity

Instance: Projection to the Proof

Idea: Variable = does not occur in the proof = Ignore x when determining commutativity

Abstraction:
» reads of irrelevant variables ~~ nondeterministic values

» assignment to irrelevant variables ~~ nondeterministic assignment (havoc)

Instance: Projection to the Proof

Idea: Variable = does not occur in the proof = Ignore x when determining commutativity

Abstraction:
» reads of irrelevant variables ~~ nondeterministic values

» assignment to irrelevant variables ~~ nondeterministic assignment (havoc)

Let IT={ {T} yi=x+x {y #1} }. Then

Instance: Projection to the Proof

Idea: Variable = does not occur in the proof = Ignore x when determining commutativity

Abstraction:
» reads of irrelevant variables ~~ nondeterministic values

» assignment to irrelevant variables ~~ nondeterministic assignment (havoc)

Let IT={ {T} yi=x+x {y #1} }. Then

an(yi=x+x) : “assign y to some even value (nondet.)"

Instance: Projection to the Proof

Idea: Variable = does not occur in the proof = Ignore x when determining commutativity

Abstraction:
» reads of irrelevant variables ~~ nondeterministic values

» assignment to irrelevant variables ~~ nondeterministic assignment (havoc)

Let IT={ {T} yi=x+x {y #1} }. Then

an(yi=x+x) : “assign y to some even value (nondet.)"

or(fxi=0)) : “do not change y”

Instance: Projection to the Proof

Idea: Variable = does not occur in the proof = Ignore x when determining commutativity

Abstraction:
» reads of irrelevant variables ~~ nondeterministic values

» assignment to irrelevant variables ~~ nondeterministic assignment (havoc)

Let IT={ {T} yi=x+x {y #1} }. Then

an(yi=x+x) : “assign y to some even value (nondet.)"

or(fxi=0)) : “do not change y”

Now: aq(’ y:=x+x) commutes with oy ((%:i=07).

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages: Limitations:

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages: Limitations:

P> often allows additional commutativity

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages: Limitations:
P> often allows additional commutativity

P abstraction easy to compute

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages: Limitations:
P> often allows additional commutativity » theoretically: may lose commutativity

P abstraction easy to compute

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages: Limitations:
P> often allows additional commutativity » theoretically: may lose commutativity

P abstraction easy to compute » practically: introduces quantifiers

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages: Limitations:
P> often allows additional commutativity » theoretically: may lose commutativity
P abstraction easy to compute » practically: introduces quantifiers

Generally: abstract commutativity 2 concrete commutativity

Instance: Projection to the Proof

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages: Limitations:
P> often allows additional commutativity » theoretically: may lose commutativity
P abstraction easy to compute » practically: introduces quantifiers

Generally: abstract commutativity 2 concrete commutativity
Solution: combine abstract with concrete commutativity

Combining Commutativity Relations

Observation: Union of safe commutativity relations may be unsafe!

Combining Commutativity Relations

Observation: Union of safe commutativity relations may be unsafe!

Example:
» precondition: T
» postcondition: z =2
» proof II: {T} x:=1 {T}E=HZ=0{ T} x==2;2:=2 {2z = 2}

Combining Commutativity Relations

Observation: Union of safe commutativity relations may be unsafe!
Example:

» precondition: T

» postcondition: z =2

» proof II: {T} x:=1 {THES=HZ=1{ T Hx==2;2:=2 {2z = 2}

x:=1 x==1;z:=1 x==2;z:=2

Combining Commutativity Relations

Observation: Union of safe commutativity relations may be unsafe!
Example:

» precondition: T

» postcondition: z =2

» proof II: {T} x:=1 {THES=HZ=1{ T Hx==2;2:=2 {2z = 2}

x:=1 G x==2;z:32 | ~j, x:=1 [x552;z:=2 | EEEEE

Combining Commutativity Relations

Observation: Union of safe commutativity relations may be unsafe!

Example:
» precondition: T
» postcondition: z =2
» proof II: {T} x:=1 {THES=HZ=1{ T Hx==2;2:=2 {2z = 2}

x:=1 G x==2;z:32 | ~j, x:=1 [x552;z:=2 | EEEEE

~1, X=525z:22) x:=1 (EERiEE

Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

(1) abstract (2) concrete
71 ~1, T2 ~lc 73
T T
proven = correct

Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

(1) abstract (2) concrete
71 ~1, T2 ~lc 73
T T
proven = correct

Combination through new proof rule:

reds'“(P) C L(TT) I, safe wrt. TI
P is correct

Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

(1) abstract (2) concrete
1 ~1, T2 ~lc 73
T T
proven = correct
Combination through new proof rule: (“more abstract than”)

N
red_]j' """ '(p) C £(1) L, ..., I, safe wrt. II L3...91,
P is correct

Combining Commutativity Relations

Idea: Sequentially combine commutativity relations

(1) abstract (2) concrete
1 ~I, T2 ~lc 73
T T
proven = correct
Combination through new proof rule: (“more abstract than”)

N
red_]j' """ '(p) C £(1) L, ..., I, safe wrt. II L3...91,
P is correct

New partial order reduction algorithm for n commutativity relations

Conclusion

In algorithmic verification, commutativity-based reductions can simplify proofs and allow
efficient proof checking.

In algorithmic verification, commutativity-based reductions can simplify proofs and allow
efficient proof checking.

Preference Orders: Selection of representatives in reduction
» influences both proof simplicity and proof check efficiency
» trade-off between both aspects

In algorithmic verification, commutativity-based reductions can simplify proofs and allow
efficient proof checking.
Preference Orders: Selection of representatives in reduction

» influences both proof simplicity and proof check efficiency
» trade-off between both aspects

Commutativity Relations: Determines notion of equivalence
» automatically computed and safe wrt. a proof
P> e.g. derived from safe abstractions

> new proof rule and algorithm combine commutativity relations

In algorithmic verification, commutativity-based reductions can simplify proofs and allow
efficient proof checking.
Preference Orders: Selection of representatives in reduction

» influences both proof simplicity and proof check efficiency
» trade-off between both aspects

Commutativity Relations: Determines notion of equivalence
» automatically computed and safe wrt. a proof
P> e.g. derived from safe abstractions

> new proof rule and algorithm combine commutativity relations

Questions?

