Commutativity in Concurrent Program Verification

Dominik Klumpp klumpp@informatik.uni-freiburg.de University of Freiburg

joint work with: Azadeh Farzan (University of Toronto) Andreas Podelski (University of Freiburg) Marcel Ebbinghaus (University of Freiburg)

AVM 2022

$$\{ x = y = i = j = 0 \}$$

$$\{ x = y \}$$

Naïve Sequentialization

Example: x+=A[i] y+=A[j] ~ y+=A[j] x+=A[i]

Example: x+=A[i] y+=A[j] ~ y+=A[j] x+=A[i]

 \Rightarrow equivalence between program interleavings

Example: $x += A[i] y += A[j] \sim y += A[j] x += A[i]$

 \Rightarrow equivalence between program interleavings

Extension: proof-sensitive commutativity

Example: B[k] := c commutes with B[1] := d if proof guarantees $k \neq l \lor c = d$

Example: $x += A[i] y += A[j] \sim y += A[j] x += A[i]$

 \Rightarrow equivalence between program interleavings

Extension: proof-sensitive commutativity

Example: B[k]:=c commutes with B[1]:=d if proof guarantees $k \neq l \lor c = d$ **Typical Cases:** aliasing, conditional updates (CAS), blocking statements (locks)

Example: $x += A[i] y += A[j] \sim y += A[j] x += A[i]$

 \Rightarrow equivalence between program interleavings

Extension: proof-sensitive commutativity

Example: B[k] := c commutes with B[1] := d if proof guarantees $k \neq l \lor c = d$ **Typical Cases:** aliasing, conditional updates (CAS), blocking statements (locks)

Key Property: Correct traces only equivalent to correct traces.

Example: $x += A[i] y += A[j] \sim y += A[j] x += A[i]$

 \Rightarrow equivalence between program interleavings

Extension: proof-sensitive commutativity

Example: B[k] := c commutes with B[1] := d if proof guarantees $k \neq l \lor c = d$ **Typical Cases:** aliasing, conditional updates (CAS), blocking statements (locks)

Key Property: Correct traces only equivalent to correct traces.

Reduction

Naïve Sequentialization

Reduction I

Algorithmic Verification of Reductions

Iteratively construct Floyd/Hoare-style proof of program

complex proofs to cover all interleavings

- qualitatively: need quantified / nonlinear / ... assertions
- quantitatively: need many distinct proof assertions

complex proofs to cover all interleavings

- qualitatively: need quantified / nonlinear / ... assertions
- quantitatively: need many distinct proof assertions

→ reduction may have simpler proof

complex proofs to cover all interleavings

- qualitatively: need quantified / nonlinear / ... assertions
- quantitatively: need many distinct proof assertions
- → reduction may have simpler proof

exponential proof checking to show that proof covers all interleavings

complex proofs to cover all interleavings

- qualitatively: need quantified / nonlinear / ... assertions
- quantitatively: need many distinct proof assertions
- → reduction may have simpler proof

exponential proof checking to show that proof covers all interleavings **compactly represent** reductions

complex proofs to cover all interleavings

- qualitatively: need quantified / nonlinear / ... assertions
- quantitatively: need many distinct proof assertions
- → reduction may have simpler proof

exponential proof checking to show that proof covers all interleavings **compactly represent** reductions

 Ebbinghaus. Tight Integration of Partial Order Reduction into Trace Abstraction Refinement. BSc Thesis
 Klumpp, Dietsch, Heizmann, Schüssele, Ebbinghaus, Farzan and Podelski. Ultimate GemCutter and the Axes of Generalization - (Competition Contribution). TACAS 2022

Evaluation

Implemented in $\rm ULTIMATE~GEMCUTTER$ software model checker Evaluated on SV-COMP'21 benchmarks and benchmarks of $\rm WEAVER$ tool

analyzed 50 more programs using significantly less time ($\approx 50\%$), memory ($\approx 27\%$), and refinement rounds ($\approx 64\%$)

Preference Orders

Selecting the right representatives

[3] Farzan, Klumpp and Podelski. Sound sequentialization for concurrent program verification. PLDI 2022

Reduction I

Reduction II

order interleavings from most preferred (smallest) to least preferred (greatest)

- order interleavings from most preferred (smallest) to least preferred (greatest)
- keep only most preferred representative per equivalence class

 $red^{I}_{\preceq}(P) := \{ \min_{\preceq} [\tau]_{\sim_{I}} \mid \tau \in P \}$

- order interleavings from most preferred (smallest) to least preferred (greatest)
- keep only most preferred representative per equivalence class

$$red^{I}_{\preceq}(P) := \{ \min_{\preceq} [\tau]_{\sim_{I}} \mid \tau \in P \}$$

independent of commutativity

- order interleavings from most preferred (smallest) to least preferred (greatest)
- keep only most preferred representative per equivalence class

$$red^{I}_{\preceq}(P) := \{ \min_{\preceq} [\tau]_{\sim_{I}} \mid \tau \in P \}$$

- independent of commutativity
- ► same scheme of preference order applies to different programs

Algorithmic construction of reductions using techniques from partial order reduction:

Algorithmic construction of reductions using techniques from partial order reduction:

finite representation as control flow graphs

- finite representation as control flow graphs
 - constructed using variant of sleep set technique

- finite representation as control flow graphs
 - constructed using variant of sleep set technique
- no redundant interleavings: proofs not unnecessarily complex

- finite representation as control flow graphs
 - constructed using variant of sleep set technique
- no redundant interleavings: proofs not unnecessarily complex
- compact representation

- finite representation as control flow graphs
 - constructed using variant of sleep set technique
- no redundant interleavings: proofs not unnecessarily complex
- compact representation
 - through weakly persistent membranes

- finite representation as control flow graphs
 - constructed using variant of sleep set technique
- no redundant interleavings: proofs not unnecessarily complex
- compact representation
 - through weakly persistent membranes
- linear-size representation in the best case

- finite representation as control flow graphs
 - constructed using variant of sleep set technique
- no redundant interleavings: proofs not unnecessarily complex
- compact representation
 - through weakly persistent membranes
- linear-size representation in the best case

\rightarrow More on preference orders in Marcel's talk

Commutativity Relations

at different abstraction levels

[work in progress; presented at Commute workshop @ PLDI'22]

Statements \boldsymbol{x}_1 and \boldsymbol{x}_2 commute

iff

Statements \pounds_1 and \pounds_2 commute

iff

the order of execution does not matter

Statements \pounds_1 and \pounds_2 commute

iff

the order of execution does not matter $(s_1s_2 \text{ behaves exactly like } s_2s_1)$

Formally: $[\![t_1 t_2]\!] = [\![t_2 t_1]\!]$

iff

the order of execution does not matter $(\pounds_1 \pounds_2$ behaves exactly like $\pounds_2 \pounds_1)$ for all programs and wrt. all properties

Formally: $[\![t_1 t_2]\!] = [\![t_2 t_1]\!]$

Statements \boldsymbol{x}_1 and \boldsymbol{x}_2 commute

iff

the order of execution does not matter $(x_1x_2 \text{ behaves similar enough to } x_2x_1)$ for a given program and property

Let Π be a **proof** (a set of Hoare triples).

 $\frac{\operatorname{red}^I_{\preceq}(P) \subseteq \mathcal{L}(\Pi)}{P \text{ is correct}}$

Let Π be a **proof** (a set of Hoare triples).

Let Π be a **proof** (a set of Hoare triples).

traces proven correct by
$$\Pi$$

$$\underline{red^{I}_{\preceq}(P) \subseteq \mathcal{L}(\Pi) \quad I \text{ safe wrt. } \Pi}_{P \text{ is correct}}$$

Let Π be a **proof** (a set of Hoare triples).

Let Π be a **proof** (a set of Hoare triples).

• commutativity I_C based on (concrete) semantics: safe wrt. all proofs Π

Let Π be a **proof** (a set of Hoare triples).

• commutativity I_C based on (concrete) semantics: safe wrt. all proofs Π

• How to get safe commutativity for a particular proof Π ?

Let $\alpha: Stmt \to Stmt$.

Let $\alpha: Stmt \to Stmt$.

$$I_{\alpha} := \{ (\boldsymbol{s}_1, \boldsymbol{s}_2) \mid \llbracket \alpha(\boldsymbol{s}_1) \alpha(\boldsymbol{s}_2) \rrbracket = \llbracket \alpha(\boldsymbol{s}_2) \alpha(\boldsymbol{s}_1) \rrbracket \}$$

Let $\alpha: Stmt \to Stmt$.

$$I_{\alpha} := \{ (\boldsymbol{s}_1, \boldsymbol{s}_2) \mid \llbracket \alpha(\boldsymbol{s}_1) \alpha(\boldsymbol{s}_2) \rrbracket = \llbracket \alpha(\boldsymbol{s}_2) \alpha(\boldsymbol{s}_1) \rrbracket \}$$

Theorem (Safety)

If α satisfies

- ▶ abstraction: $\llbracket t \rrbracket \subseteq \llbracket \alpha(t) \rrbracket$ for all t
- **•** preservation: $\{\varphi\}\alpha(x)\{\psi\}$ is valid, for all $\{\varphi\}x\{\psi\}\in\Pi$

then I_{α} is safe wrt. Π .

- ▶ reads of irrelevant variables ~→ nondeterministic values
- ► assignment to irrelevant variables ~> nondeterministic assignment (havoc)

- ▶ reads of irrelevant variables ~→ nondeterministic values
- ► assignment to irrelevant variables ~> nondeterministic assignment (havoc)

Example

Let $\Pi = \{ \{\top\} | \mathbf{y} := \mathbf{x} + \mathbf{x} \{ y \neq 1 \} \}$. Then

- ▶ reads of irrelevant variables ~→ nondeterministic values
- ► assignment to irrelevant variables ~> nondeterministic assignment (havoc)

Example Let $\Pi = \{ \{T\} | y := x + x | y \neq 1\} \}$. Then $\alpha_{\Pi}(y := x + x)$: "assign y to some even value (nondet.)"

- ▶ reads of irrelevant variables ~→ nondeterministic values
- ► assignment to irrelevant variables ~>> nondeterministic assignment (havoc)

- ▶ reads of irrelevant variables ~→ nondeterministic values
- ► assignment to irrelevant variables ~> nondeterministic assignment (havoc)

Advantages:

Limitations:

Advantages:

Limitations:

often allows additional commutativity

Advantages:

Limitations:

- often allows additional commutativity
- abstraction easy to compute

Advantages:

- often allows additional commutativity
- abstraction easy to compute

Limitations:

theoretically: may lose commutativity

Advantages:

- often allows additional commutativity
- abstraction easy to compute

Limitations:

- theoretically: may lose commutativity
- practically: introduces quantifiers

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages:

- often allows additional commutativity
- abstraction easy to compute

Limitations:

- theoretically: may lose commutativity
- practically: introduces quantifiers

Generally: abstract commutativity $\not\supseteq$ concrete commutativity

Proposition: Projection to the proof is safe (it satisfies abstraction and preservation).

Advantages:

- often allows additional commutativity
- abstraction easy to compute

Limitations:

- theoretically: may lose commutativity
- practically: introduces quantifiers

Generally: abstract commutativity $\not\supseteq$ concrete commutativity **Solution:** combine abstract with concrete commutativity

- **•** precondition: \top
- **•** postcondition: z = 2
- **b** proof Π : { \top } **x:=1** { \top } **x==1;z:=1** { \top } **x==2;z:=2** {z = 2}

- **•** precondition: \top
- **•** postcondition: z = 2
- ▶ proof Π : { \top } x:=1 { \top } x=1;z:=1 { \top } x==2;z:=2 {z=2}

- precondition: \top
- **•** postcondition: z = 2
- ▶ proof II: { \top } x:=1 { \top } x=1;z:=1 { \top } x=2;z:=2 {z=2}

- precondition: \top
- **•** postcondition: z = 2
- ▶ proof Π : { \top } x:=1 { \top } x=1;z:=1 { \top } x=2;z:=2 {z=2}

Idea: Sequentially combine commutativity relations

Idea: Sequentially combine commutativity relations

Idea: Sequentially combine commutativity relations

Combination through **new proof rule**:

$$\frac{red^{I_{\alpha}, I_{C}}_{\preceq}(P) \subseteq \mathcal{L}(\Pi) \quad I_{\alpha} \text{ safe wrt. } \Pi}{P \text{ is correct}}$$

Idea: Sequentially combine commutativity relations

Idea: Sequentially combine commutativity relations

New partial order reduction algorithm for n commutativity relations

Conclusion

In algorithmic verification, **commutativity-based reductions** can **simplify proofs** and allow **efficient proof checking**.

In algorithmic verification, **commutativity-based reductions** can **simplify proofs** and allow **efficient proof checking**.

Preference Orders: Selection of representatives in reduction

- influences both proof simplicity and proof check efficiency
- trade-off between both aspects

In algorithmic verification, **commutativity-based reductions** can **simplify proofs** and allow **efficient proof checking**.

Preference Orders: Selection of representatives in reduction

- influences both proof simplicity and proof check efficiency
- trade-off between both aspects

Commutativity Relations: Determines notion of equivalence

- automatically computed and safe wrt. a proof
- e.g. derived from safe abstractions
- new proof rule and algorithm combine commutativity relations

In algorithmic verification, **commutativity-based reductions** can **simplify proofs** and allow **efficient proof checking**.

Preference Orders: Selection of representatives in reduction

- influences both proof simplicity and proof check efficiency
- trade-off between both aspects

Commutativity Relations: Determines notion of equivalence

- automatically computed and safe wrt. a proof
- e.g. derived from safe abstractions
- new proof rule and algorithm combine commutativity relations

