
Integrating Source Code, Specification, and
Proof State into a Single View in KeY

Wolfram Pfeifer | August 12, 2022

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu


Deductive verifier for (sequential) Java

Java Modeling Language (JML)

Modular specification/verification

Dynamic Logic (JavaDL), sequent calculus
Automatic and interactive application of rules

Optional translation to SMT-LIB

Symbolic Execution
Dynamic Frames

Counterexample generation
Information flow proofs

Testcase generation
. . .

2/8 Aug 12, 2022
W. Pfeifer: Integrating Source Code, Specification,
and Proof State into a Single View in KeY

Institute of Information Security
and Dependability (KASTEL)

KeY

master's student: verification case study, about 900 lines of code, cache-efficient sorting algorithm



Deductive verifier for (sequential) Java

Java Modeling Language (JML)

Modular specification/verification

Dynamic Logic (JavaDL), sequent calculus
Automatic and interactive application of rules

Optional translation to SMT-LIB

Symbolic Execution
Dynamic Frames

Counterexample generation
Information flow proofs

Testcase generation
. . .

2/8 Aug 12, 2022
W. Pfeifer: Integrating Source Code, Specification,
and Proof State into a Single View in KeY

Institute of Information Security
and Dependability (KASTEL)

KeY

master's student: verification case study, about 900 lines of code, cache-efficient sorting algorithm



Deductive verifier for (sequential) Java

Java Modeling Language (JML)

Modular specification/verification

Dynamic Logic (JavaDL), sequent calculus
Automatic and interactive application of rules

Optional translation to SMT-LIB

Symbolic Execution
Dynamic Frames

Counterexample generation
Information flow proofs

Testcase generation
. . .

2/8 Aug 12, 2022
W. Pfeifer: Integrating Source Code, Specification,
and Proof State into a Single View in KeY

Institute of Information Security
and Dependability (KASTEL)

KeY

master's student: verification case study, about 900 lines of code, cache-efficient sorting algorithm



Deductive verifier for (sequential) Java

Java Modeling Language (JML)

Modular specification/verification

Dynamic Logic (JavaDL), sequent calculus
Automatic and interactive application of rules

Optional translation to SMT-LIB

Symbolic Execution
Dynamic Frames

Counterexample generation
Information flow proofs

Testcase generation
. . .

2/8 Aug 12, 2022
W. Pfeifer: Integrating Source Code, Specification,
and Proof State into a Single View in KeY

Institute of Information Security
and Dependability (KASTEL)

KeY

master's student: verification case study, about 900 lines of code, cache-efficient sorting algorithm



Deductive verifier for (sequential) Java

Java Modeling Language (JML)

Modular specification/verification

Dynamic Logic (JavaDL), sequent calculus
Automatic and interactive application of rules

Optional translation to SMT-LIB

Symbolic Execution
Dynamic Frames

Counterexample generation
Information flow proofs

Testcase generation
. . .

2/8 Aug 12, 2022
W. Pfeifer: Integrating Source Code, Specification,
and Proof State into a Single View in KeY

Institute of Information Security
and Dependability (KASTEL)

KeY

master's student: verification case study, about 900 lines of code, cache-efficient sorting algorithm



Deductive verifier for (sequential) Java

Java Modeling Language (JML)

Modular specification/verification

Dynamic Logic (JavaDL), sequent calculus
Automatic and interactive application of rules

Optional translation to SMT-LIB

Symbolic Execution
Dynamic Frames

Counterexample generation
Information flow proofs

Testcase generation
. . .

2/8 Aug 12, 2022
W. Pfeifer: Integrating Source Code, Specification,
and Proof State into a Single View in KeY

Institute of Information Security
and Dependability (KASTEL)

KeY

master's student: verification case study, about 900 lines of code, cache-efficient sorting algorithm



Deductive verifier for (sequential) Java

Java Modeling Language (JML)

Modular specification/verification

Dynamic Logic (JavaDL), sequent calculus
Automatic and interactive application of rules

Optional translation to SMT-LIB

Symbolic Execution
Dynamic Frames

Counterexample generation
Information flow proofs

Testcase generation
. . .

2/8 Aug 12, 2022
W. Pfeifer: Integrating Source Code, Specification,
and Proof State into a Single View in KeY

Institute of Information Security
and Dependability (KASTEL)

KeY

master's student: verification case study, about 900 lines of code, cache-efficient sorting algorithm



Deductive verifier for (sequential) Java

Java Modeling Language (JML)

Modular specification/verification

Dynamic Logic (JavaDL), sequent calculus
Automatic and interactive application of rules

Optional translation to SMT-LIB

Symbolic Execution
Dynamic Frames

Counterexample generation
Information flow proofs

Testcase generation
. . .

2/8 Aug 12, 2022
W. Pfeifer: Integrating Source Code, Specification,
and Proof State into a Single View in KeY

Institute of Information Security
and Dependability (KASTEL)

KeY

master's student: verification case study, about 900 lines of code, cache-efficient sorting algorithm



Deductive verifier for (sequential) Java

Java Modeling Language (JML)

Modular specification/verification

Dynamic Logic (JavaDL), sequent calculus
Automatic and interactive application of rules

Optional translation to SMT-LIB

Symbolic Execution
Dynamic Frames

Counterexample generation
Information flow proofs

Testcase generation
. . .

2/8 Aug 12, 2022
W. Pfeifer: Integrating Source Code, Specification,
and Proof State into a Single View in KeY

Institute of Information Security
and Dependability (KASTEL)

KeY

master's student: verification case study, about 900 lines of code, cache-efficient sorting algorithm





precondition ϕ



precondition ϕ

program p



precondition ϕ

program p

postcondition ψ



precondition ϕ

program p

postcondition ψ

ϕ→ ⟨p⟩ψ







What is to prove?
Wrong specification?

Source code bug?
Prover needs help?

automatic strategy may get stuck, the current state is presented as a sequent, need to explore what happened



What is to prove?
Wrong specification?

Source code bug?
Prover needs help?

automatic strategy may get stuck, the current state is presented as a sequent, need to explore what happened



What is to prove?
Wrong specification?

Source code bug?
Prover needs help?

automatic strategy may get stuck, the current state is presented as a sequent, need to explore what happened



What is to prove?
Wrong specification?

Source code bug?
Prover needs help?

automatic strategy may get stuck, the current state is presented as a sequent, need to explore what happened



What is to prove?
Wrong specification?

Source code bug?
Prover needs help?

automatic strategy may get stuck, the current state is presented as a sequent, need to explore what happened



``mental'' gap


* additional predicates/functions


* different representations of formulas/terms



?

``mental'' gap


* additional predicates/functions


* different representations of formulas/terms



valid Java heap

``mental'' gap


* additional predicates/functions


* different representations of formulas/terms



valid Java heap

type information

``mental'' gap


* additional predicates/functions


* different representations of formulas/terms



valid Java heap

type information
no termination witness

``mental'' gap


* additional predicates/functions


* different representations of formulas/terms



heap encoding

``mental'' gap


* additional predicates/functions


* different representations of formulas/terms



heap encoding

formula normalization

``mental'' gap


* additional predicates/functions


* different representations of formulas/terms



 * mockup: take sequent and origin information of formulas and enrich the source file with it
 * encode lhs of sequent as assumptions, rhs as assertions
 * heap state a formula is evaluated in: each position in program corresponds to a heap state -> intuitive for the user
 * additional predicates are not needed to be shown
 * collapsed: loop code and invariant
 * allow interaction (coarser level, map rule applications back to sequent)
 * work in progress, TODO: multiple heap states, assignable, ... 



Idea
Combined view for source, specification, and proof state

that facilitates understanding of the current proof situation,

which the user can interact with,

with which (hopefully) most Java programs can be verified.

Open Questions
How can formulas be represented that relate multiple heap states?

How can framing clauses be represented?

What about multiple modalities (queries, information flow, . . . )?

8/8 Aug 12, 2022
W. Pfeifer: Integrating Source Code, Specification,
and Proof State into a Single View in KeY

Institute of Information Security
and Dependability (KASTEL)

Summary


	KeY
	Problem
	Idea
	Conclusion

