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What is to prove?
Wrong specification?

Source code bug?
Prover needs help?

automatic strategy may get stuck, the current state is presented as a sequent, need to explore what happened
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* different representations of formulas/terms



 * mockup: take sequent and origin information of formulas and enrich the source file with it
 * encode lhs of sequent as assumptions, rhs as assertions
 * heap state a formula is evaluated in: each position in program corresponds to a heap state -> intuitive for the user
 * additional predicates are not needed to be shown
 * collapsed: loop code and invariant
 * allow interaction (coarser level, map rule applications back to sequent)
 * work in progress, TODO: multiple heap states, assignable, ... 



Idea
Combined view for source, specification, and proof state

that facilitates understanding of the current proof situation,

which the user can interact with,

with which (hopefully) most Java programs can be verified.

Open Questions
How can formulas be represented that relate multiple heap states?

How can framing clauses be represented?

What about multiple modalities (queries, information flow, . . . )?
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